
pwkit
Release 0.6.99

September 09, 2015

Contents

1 About the Software 3
1.1 Installation . 3
1.2 Authors . 3
1.3 Copyright and License . 3

2 Foundations 5
2.1 Core utilities (pwkit) . 5
2.2 Convenient file input and output (pwkit.io) . 7
2.3 Numerical utilities (pwkit.numutil) . 14
2.4 Framework for easy parallelized processing (pwkit.parallel) 17
2.5 Quick enumerations of constant values (pwkit.simpleenum) 18

3 Scientific Algorithms 21
3.1 Basic astronomical calculations (pwkit.astutil) . 21
3.2 File-format-agnostic loading of astronomical images (pwkit.astimage) 23
3.3 The Bayesian Blocks algorithm (pwkit.bblocks) . 24
3.4 Constants in CGS units (pwkit.cgs) . 25
3.5 Representations of and computations with ellipses (pwkit.ellipses) 26
3.6 Modeling sources in images (pwkit.immodel) . 29
3.7 Bayesian confidence intervals for count rates (pwkit.kbn_conf) 30
3.8 Nonlinear least-squares minimization with Levenberg-Marquardt (pwkit.lmmin) 30
3.9 Fitting generic models with least-squares minimization (pwkit.lsqmdl) 32
3.10 Math with uncertain and censored measurements (pwkit.msmt) 33
3.11 Period-finding with Phase Dispersion Minimization (pwkit.pdm) 36
3.12 Loading the outputs of PHOENIX atmospheric models (pwkit.phoenix) 38
3.13 Flux density models of radio calibrators (pwkit.radio_cal_models) 39
3.14 Synthetic photometry (pwkit.synphot) . 39
3.15 Scaling relations for physical properties of ultra-cool dwarfs (pwkit.ucd_physics) 42

4 Command-line tools 45
4.1 Quick astronomical calculations (astrotool) . 45
4.2 Quick operations on astronomical images (pwkit.cli.imtool) 45
4.3 Single-command compilation of LaTeX documents (latexdriver) 45
4.4 Wrap the output of a sub-program with extra information (wrapout) 45

5 Data Visualization 47
5.1 Mapping arbitrary data to color scales (pwkit.colormaps) . 47
5.2 Tracing contours (pwkit.contours) . 48

i

5.3 Utilities for data visualization (pwkit.data_gui_helpers) 48
5.4 Easy visualization of matrices with GTK+ version 2 (pwkit.ndshow_gtk2) 49
5.5 Easy visualization of matrices with GTK+ version 3 (pwkit.ndshow_gtk3) 50

6 Data input and output 53
6.1 Streaming output from other programs (pwkit.slurp) . 53
6.2 A simple “ini” file format (pwkit.inifile) . 55
6.3 Outputting data in LaTeX format (pwkit.latex) . 56
6.4 Reading and writing data tables with types and uncertainties (pwkit.tabfile) 59
6.5 An “ini” file format with typed, uncertain data (pwkit.tinifile) 60
6.6 Converting Unicode to LaTeX notation (pwkit.unicode_to_latex) 61

7 External Software Environments 63
7.1 CASA (pwkit.environments.casa) . 63
7.2 Compact-source photometry with discrete Fourier transformations

(pwkit.environments.casa.dftphotom) . 63
7.3 Structured scripting within casapy (pwkit.environments.casa.scripting) 63
7.4 Merging spectral windows in visibility data (pwkit.environments.casa.spwglue) 64
7.5 Quick access to basic CASA tasks (pwkit.environments.casa.tasks) 64
7.6 Utilities for Python invocation of CASA tools (pwkit.environments.casa.util) 65
7.7 HEASoft (pwkit.environments.heasoft) . 65
7.8 SAS (pwkit.environments.sas) . 66
7.9 SAS (pwkit.environments.sas.data) . 67

8 Tools for writing command-line programs 69
8.1 Utilities for command-line programs (pwkit.cli) . 69
8.2 Parsing keyword-style program arguments (pwkit.kwargv) . 71
8.3 Command-line programs with sub-commands (pwkit.cli.multitool) 74

9 Behind-the-scenes infrastructure 77
9.1 Interfacing with other software environments (pwkit.environments) 77
9.2 Helper for decorators on class methods (pwkit.method_decorator) 78

10 Indices and tables 79

Python Module Index 81

ii

pwkit, Release 0.6.99

This documentation has a lot of stubs.

Contents 1

pwkit, Release 0.6.99

2 Contents

CHAPTER 1

About the Software

pwkit is a collection of Peter Williams’ miscellaneous Python tools. I’m packaging them so that other people can
install them off of PyPI or Conda and run my code without having to go to too much work. That’s the hope, at least.

1.1 Installation

The most recent stable version of pwkit is available on the Python package index, so you should be able to install this
package simply by running pip install pwkit. The package is also available in the conda package manager by
installing it from binstar.org; the command conda install -c pkgw pwkit should suffice.

If you want to download the source code and install pwkitmanually, the package uses the standard Python setuptools,
so running python setup.py install will do the trick.

1.2 Authors

pwkit is authored by Peter K. G. Williams and collaborators. Despite this package being named after me, contribu-
tions are welcome and will be given full credit. I just don’t want to have to make up a decent name for this package
right now.

Contributions have come from (alphabetically by surname):

• Maïca Clavel

• Elisabeth Newton

• Denis Ryzhkov (I copied method_decorator)

1.3 Copyright and License

The pwkit package is copyright Peter K. G. Williams and collaborators and licensed under the MIT license, which
is reproduced in the file LICENSE in the source tree.

3

https://pypi.python.org/pypi/pwkit/
http://conda.pydata.org/docs/
https://binstar.org/pkgw/pwkit
https://pypi.python.org/pypi/setuptools
https://github.com/denis-ryzhkov/method_decorator/
http://opensource.org/licenses/MIT

pwkit, Release 0.6.99

4 Chapter 1. About the Software

CHAPTER 2

Foundations

This documentation has a lot of stubs.

2.1 Core utilities (pwkit)

The toplevel pwkit module includes a few basic abstractions that show up throughout the rest of the codebase. These
include:

• The Holder namespace object

• Utilities for exceptions

• Abstractions between Python versions 2 and 3

2.1.1 The Holder namespace object

Holder is a “namespace object” that primarily exists so that you can fill it with named attributes however you
want. This is convenient for, say, implementing functions that return complex data in a way that’s amenable to future
extension.

class pwkit.Holder(__decorating=None, **kwargs)
Create a new Holder. Any keyword arguments will be assigned as properties on the object itself, for instance,
o = Holder (foo=1) yields an object such that o.foo is 1.

The __decorating keyword is used to implement the Holder decorator functionality, described below.

While the Holder is primarily meant for bare-bones namespace management, it does provide several convenience
functions: Holder.get(), Holder.set(), Holder.set_one(), Holder.has(), Holder.copy(),
Holder.to_dict(), and Holder.to_pretty().

Holder.__unicode__()
Placeholder.

Holder.__str__()
Placeholder.

Holder.__repr__()
Placeholder.

Holder.__iter__()
Placeholder.

5

pwkit, Release 0.6.99

Holder.__contains__(key)
Placeholder.

Holder.get(name, defval=None)
Placeholder.

Holder.set(**kwargs)
Placeholder.

Holder.set_one(name, value)
Placeholder.

Holder.has(name)
Placeholder.

Holder.copy()
Placeholder.

Holder.to_dict()
Placeholder.

Holder.to_pretty(format=’str’)
Placeholder.

@pwkit.Holder
Placeholder decorator documentation.

2.1.2 Utilities for exceptions

PKError (fmt, *args):
Placeholder.

reraise_context (fmt, *args):
Placeholder.

2.1.3 Abstractions between Python versions 2 and 3

pwkit.text_type
The builtin class corresponding to text in this Python interpreter: either unicode in Python 2, or str in Python
3.

pwkit.binary_type
The builtin class corresponding to binary data in this Python interpreter: either str in Python 2, or bytes in
Python 3.

pwkit.unicode_to_str(s)
A function for implementing the __str__ method of classes, the meaning of which differs between Python
versions 2 and 3. In all cases, you should implement __unicode__ on your classes. Setting the __str__
property of a class to unicode_to_str() will cause it to Do The Right Thing™, which means returning the
UTF-8 encoded version of its Unicode expression in Python 2, or returning the Unicode expression directly in
Python 3:

import pwkit

class MyClass (object):
def __unicode__ (self):

return u'my value'

6 Chapter 2. Foundations

https://docs.python.org/library/functions.html#str
https://docs.python.org/library/functions.html#str

pwkit, Release 0.6.99

__str__ = pwkit.unicode_to_str

2.2 Convenient file input and output (pwkit.io)

The pwkit package provides many tools to ease reading and writing data files. The most generic such tools are
located in the pwkit.io module. The most important tool is the Path class for object-oriented navigation of the
filesystem.

class pwkit.io.Path(path)
This is an extended version of the pathlib.Path class. (pathlib is built into Python 3.x and is available
as a backport to Python 2.x.) It represents a path on the filesystem.

The key methods on Path instances are:

•absolute() — see also resolve()

•as_hdf_store()

•as_uri()

•chmod()

•cwd()

•ensure_parent()

•exists()

•expand()

•glob()

•is_absolute()

•is_block_device()

•is_char_device()

•is_dir()

•is_fifo()

•is_file()

•is_socket()

•is_symlink()

•iterdir() — see also scandir()

•joinpath()

•make_relative()

•match()

•mkdir()

•open() — see also try_open()

•read_lines()

•read_fits() — see also read_fits_bintable()

•read_fits_bintable() — see also read_fits()

2.2. Convenient file input and output (pwkit.io) 7

pwkit, Release 0.6.99

•read_hdf()

•read_inifile()

•read_numpy_text()

•read_pandas()

•read_pickle()

•read_pickles()

•read_tabfile()

•relative_to() — see also make_relative()

•rellink_to() — see also symlink_to()

•rename()

•resolve() — see also absolute()

•rglob()

•rmdir() — see also rmtree()

•rmtree() — see also rmdir()

•scandir() — see also iterdir()

•stat()

•symlink_to() — see also rellink_to()

•touch()

•try_open() — see also open()

•try_unlink() — see also unlink()

•unlink() — see also try_unlink()

•with_name()

•with_suffix()

•write_pickle()

•write_pickles()

Attributes are:

•anchor

•drive

•name

•parts

•parent

•parents

•root

•stem

•suffix

•suffixes

8 Chapter 2. Foundations

pwkit, Release 0.6.99

There are also some free functions in the pwkit.io module, but they are generally being superseded by operations
on Path objects.

2.2.1 Path methods

Path.absolute()
Return an absolute version of the path. Unlike resolve(), does not normalize the path or resolve symlinks.

Path.as_hdf_store(mode=’r’, **kwargs)
Return the path as an opened pandas.HDFStore object. Note that the HDFStore constructor uncondition-
ally prints messages to standard output when opening and closing files, so use of this function will pollute your
program’s standard output. The kwargs are forwarded to the HDFStore constructor.

Path.as_uri()
Return the path stringified as a file:/// URI.

Path.chmod(mode)
Change the mode of the named path. Remember to use octal 0o755 notation!

Path.ensure_parent(mode=0o777, parents=False)
Ensure that this path’s parent directory exists. Returns a boolean indicating whether the parent directory already
existed. Will attempt to create superior parent directories if parents is true. Unlike Path.mkdir(), will not
raise an exception if parents already exist.

Path.exists()
Returns whether the path exists.

Path.expand(user=False, vars=False, glob=False, resolve=False)
Return a new Path with various expansions performed. All expansions are disabled by default but can be
enabled by passing in true values in the keyword arguments.

user [bool (default False)] Expand ~ and ~user home-directory constructs. If a username is unmatched or
$HOME is unset, no change is made. Calls os.path.expanduser().

vars [bool (default False)] Expand $var and ${var} environment variable constructs. Unknown variables
are not substituted. Calls os.path.expandvars().

glob [bool (default False)] Evaluate the path as a glob expression and use the matched path. If the glob does
not match anything, do not change anything. If the glob matches more than one path, raise an IOError.

resolve [bool (default False)] Call resolve() on the return value before returning it.

Path.glob(pattern)
Assuming that the path is a directory, iterate over its contents and return sub-paths matching the given shell-style
glob pattern.

Path.is_absolute()
Returns whether the path is absolute.

Path.is_block_device()
Returns whether the path resolves to a block device file.

Path.is_char_device()
Returns whether the path resolves to a character device file.

Path.is_dir()
Returns whether the path resolves to a directory.

Path.is_fifo()
Returns whether the path resolves to a Unix FIFO.

2.2. Convenient file input and output (pwkit.io) 9

https://docs.python.org/library/os.path.html#os.path.expanduser
https://docs.python.org/library/os.path.html#os.path.expandvars
https://docs.python.org/library/glob.html#module-glob

pwkit, Release 0.6.99

Path.is_file()
Returns whether the path resolves to a regular file.

Path.is_socket()
Returns whether the path resolves to a Unix socket.

Path.is_symlink()
Returns whether the path resolves to a symbolic link.

Path.iterdir()
Assuming the path is a directory, generate a sequence of sub-paths corresponding to its contents.

Path.joinpath(*args)
Combine this path with several new components. If one of the arguments is absolute, all previous components
are discarded.

Path.make_relative(other)
Return a new path that is the equivalent of this one relative to the path other. Unlike relative_to(), this
will not throw an error if self is not a sub-path of other; instead, it will use .. to build a relative path. This can
result in invalid relative paths if other contains a directory symbolic link.

If self is an absolute path, it is returned unmodified.

Path.match(pattern)
Test whether this path matches the given shell glob pattern.

Path.mkdir(mode=0o777, parents=False)
Create a directory at this path location. Creates parent directories if parents is true. Raises OSError if the path
already exists, even if parents is true.

Path.open(mode=’r’, buffering=-1, encoding=None, errors=None, newline=None)
Open the file pointed at by the path and return a file object. TODO: verify whether semantics correspond to
io.open() or plain builtin open().

Path.read_lines(mode=’rt’, noexistok=False, **kwargs)
Generate a sequence of lines from the file pointed to by this path, by opening as a regular file and iterating over
it. The lines therefore contain their newline characters. If noexistok, a nonexistent file will result in an empty
sequence rather than an exception. kwargs are passed to Path.open().

Path.read_fits(**kwargs)
Open as a FITS file, returning a astropy.io.fits.HDUList object. Keyword arguments are passed to
astropy.io.fits.open(); valid ones likely include:

•mode = ’readonly’ (or “update”, “append”, “denywrite”, “ostream”)

•memmap = None

•save_backup = False

•cache = True

•uint = False

•ignore_missing_end = False

•checksum = False

•disable_image_compression = False

•do_not_scale_image_data = False

•ignore_blank = False

•scale_back = False

10 Chapter 2. Foundations

https://docs.python.org/library/io.html#io.open

pwkit, Release 0.6.99

Path.read_fits_bintable(hdu=1, drop_nonscalar_ok=True, **kwargs)
Open as a FITS file, read in a binary table, and return it as a pandas.DataFrame, converted with
pkwit.numutil.fits_recarray_to_data_frame(). The hdu argument specifies which HDU to
read, with its default 1 indicating the first FITS extension. The drop_nonscalar_ok argument specifies if
non-scalar table values (which are inexpressible in pandas.DataFrame‘s) should be silently
ignored (‘‘True‘) or cause a ValueError to be raised (False). Other kwargs are passed to
astropy.io.fits.open(), (see Path.read_fits()) although the open mode is hardcoded to be
"readonly".

Path.read_hdf(key, **kwargs)
Open as an HDF5 file using pandas and return the item stored under the key key. kwargs are passed to
pandas.read_hdf().

Path.read_inifile(noexistok=False, typed=False)
Open assuming an “ini-file” format and return a generator yielding data records using either
pwkit.inifile.read_stream() (if typed is false) or pwkit.tinifile.read_stream() (if it’s
true). The latter version is designed to work with numerical data using the pwkit.msmt subsystem. If noexis-
tok is true, a nonexistent file will result in no items being generated rather than an IOError being raised.

Path.read_numpy_text(**kwargs)
Read this path into a numpy.ndarray as a text file using numpy.loadtxt(). In normal conditions the
returned array is two-dimensional, with the first axis spanning the rows in the file and the second axis columns
(but see the unpack keyword). kwargs are passed to numpy.loadtxt(); they likely are:

dtype [data type] The data type of the resulting array.

comments [str] If specific, a character indicating the start of a comment.

delimiter [str] The string that separates values. If unspecified, any span of whitespace works.

converters [dict] A dictionary mapping zero-based column number to a function that will turn the cell text into
a number.

skiprows [int (default=0)] Skip this many lines at the top of the file

usecols [sequence] Which columns keep, by number, starting at zero.

unpack [bool (default=False)] If true, the return value is transposed to be of shape (cols, rows).

ndmin [int (default=0)] The returned array will have at least this many dimensions; otherwise mono-
dimensional axes will be squeezed.

Path.read_pandas(format=’table’, **kwargs)
Read using pandas. The function pandas.read_FORMAT is called where FORMAT is set from the argument
format. kwargs are passed to this function. Supported formats likely include clipboard, csv, excel, fwf,
gbq, html, json, msgpack, pickle, sql, sql_query, sql_table, stata, table. Note that hdf
is not supported because it requires a non-keyword argument; see Path.read_hdf().

Path.read_pickle()
Open the file, unpickle one object from it using cPickle, and return it.

Path.read_pickles()
Generate a sequence of objects by opening the path and unpickling items until EOF is reached.

Path.read_tabfile(tabwidth=8, mode=’rt’, noexistok=False, **kwargs)
Read this path as a table of typed measurements via pwkit.tabfile.read(). Returns a generator for a
sequence of pwkit.Holder objects, one for each row in the table, with attributes for each of the columns.

tabwidth [int (default=8)] The tab width to assume. Defaults to 8 and should not be changed unless absolutely
necessary.

mode [str (default=’rt’)] The file open mode, passed to io.open().

2.2. Convenient file input and output (pwkit.io) 11

https://docs.python.org/library/pickle.html#module-cPickle
https://docs.python.org/library/io.html#io.open

pwkit, Release 0.6.99

noexistok [bool (default=False)] If true, a nonexistent file will result in no items being generated, as opposed
to an IOError.

kwargs [keywords] Additional arguments are passed to io.open().

Path.relative_to(*other)
Return this path as made relative to another path identified by other. If this is not possible, raise ValueError.

Path.rellink_to(target, force=False)
Make this path a symlink pointing to the given target, generating the proper relative path using
make_relative(). This gives different behavior than symlink_to(). For instance, Path
(’a/b’).symlink_to (’c’) results in a/b pointing to the path c, whereas rellink_to() results
in it pointing to ../c. This can result in broken relative paths if (continuing the example) a is a symbolic link
to a directory.

If either target or self is absolute, the symlink will point at the absolute path to target. The intention is
that if you’re trying to link /foo/bar to bee/boo, it probably makes more sense for the link to point to
/path/to/.../bee/boo rather than ../../../../bee/boo.

If force is true, try_unlink() will be called on self before the link is made, forcing its re-creation.

Path.rename(target)
Rename this path to target.

Path.resolve()
Make this path absolute, resolving all symlinks and normalizing.

Path.rglob(pattern)
Recursively yield all files and directories matching the shell glob pattern pattern below this path.

Path.rmdir()
Delete this path, if it is an empty directory.

Path.rmtree()
Recursively delete this directory and its contents. If any errors are encountered, they will be printed to standard
error.

Path.scandir()
Iteratively scan this path, assuming it’s a directory. This requires and uses the scandir module. The generated
values are scandir.DirEntry objects which have some information pre-filled. These objects have meth-
ods inode(), is_dir(), is_file(), is_symlink(), and stat(). They have attributes name (the
basename of the entry) and path (its full path).

Path.stat()
Run os.stat() on the path and return the result.

Path.symlink_to(target, target_is_directory=False)
Make this path a symlink pointing to the given target.

Path.touch(mode=0o666, exist_ok=True)
Create a file at this path with the given mode, if needed.

Path.try_open(null_if_noexist=False, **kwargs)
Call Path.open() on this path (passing kwargs) and return the result. If the file doesn’t exist, the behavior
depends on null_if_noexist. If it is false (the default), None is returned. Otherwise, os.devnull is opened
and returned.

Path.try_unlink()
Try to unlink this path. If it doesn’t exist, no error is returned. Returns a boolean indicating whether the path
was really unlinked.

12 Chapter 2. Foundations

https://docs.python.org/library/io.html#io.open
https://docs.python.org/library/os.html#os.stat
https://docs.python.org/library/os.html#os.devnull

pwkit, Release 0.6.99

Path.unlink()
Unlink this file or symbolic link.

Path.with_name(name)
Return a new path with the file name changed.

Path.with_suffix(suffix)
Return a new path with the file suffix changed, or a new suffix added if there was none before. suffix should start
with a ".".

Path.write_pickle(obj)
Dump obj to this path using cPickle.

Path.write_pickles(objs)
objs must be iterable. Write each of its values to this path in sequence using cPickle.

static Path.cwd()
Returns a new path containing the absolute path of the current working directory.

2.2.2 Path attributes

Path.anchor
The concatenation of Path.drive and Path.root.

Path.drive
The Windows or network drive of the path. The empty string on POSIX.

Path.name
The final path component.

Path.parts
A tuple of the path components. The path /a/b maps to ("/", "a", "b").

Path.parent
The path’s logical parent; that is, the path with the final component removed. The parent of foo is .; the parent
of . is .; the parent of / is /.

Path.parents
An immutable sequence giving the logical ancestors of the path. Given a Path p, p.parents[0] is the
same as p.parent, p.parents[1] matches p.parent.parent, and so on. This item is of finite size,
however, so going too far (e.g. p.parents[17]) will yield an IndexError.

Path.stem
The final component without its suffix. The stem of "foo.tar.gz" is "foo.tar".

Path.suffix
The suffix of the final path component. The suffix of "foo.tar.gz" is ".gz".

Path.suffixes
A list of all suffixes on the final component. The suffixes of "foo.tar.gz" are [".tar", ".gz"].

2.2.3 Other functions in pwkit.io

These are generally superseded by operations on Path.

pwkit.io.try_open(*args, **kwargs)
Placeholder.

pwkit.io.words(linegen)
Placeholder.

2.2. Convenient file input and output (pwkit.io) 13

https://docs.python.org/library/pickle.html#module-cPickle
https://docs.python.org/library/pickle.html#module-cPickle

pwkit, Release 0.6.99

pwkit.io.pathwords(path, mode=’rt’, noexistok=False, **kwargs)
Placeholder.

pwkit.io.pathlines(path, mode=’rt’, noexistok=False, **kwargs)
Placeholder.

pwkit.io.make_path_func(*baseparts)
Placeholder.

pwkit.io.djoin(*args)
Placeholder.

pwkit.io.rellink(source, dest)
Placeholder.

pwkit.io.ensure_dir(path, parents=False)
Placeholder.

pwkit.io.ensure_symlink(src, dst)
Placeholder.

2.3 Numerical utilities (pwkit.numutil)

The numpy and scipy packages provide a whole host of routines, but there are still some that are missing. The
pwkit.numutil module provides several useful additions:

• Making functions that auto-broadcast their arguments

• Convenience functions for statistics

• Convenience functions for pandas.DataFrame objects

• Parallelized versions of simple math algorithms

• Tophat and Step Functions

2.3.1 Making functions that auto-broadcast their arguments

@pwkit.numutil.broadcastize(n_arr, ret_spec=0, force_float=True)
Wrap a function to automatically broadcast numpy.ndarray arguments.

It’s often desirable to write numerical utility functions in a way that’s compatible with vectorized processing.
It can be tedious to do this, however, since the function arguments need to turned into arrays and checked for
compatible shape, and scalar values need to be special cased.

The @broadcastize decorator takes care of these matters. The decorated function can be implemented in
vectorized form under the assumption that all array arguments have been broadcast to the same shape. The
broadcasting of inputs and (potentially) de-vectorizing of the return values are done automatically. For instance,
if you decorate a function foo(x,y)with @numutil.broadcastize(2), you can implement it assuming
that both x and y are numpy.ndarray objects that have at least one dimension and are both of the same shape.
If the function is called with only scalar arguments, x and y will have shape (1,) and the function’s return
value will be turned back into a scalar before reaching the caller.

The n_arr argument specifies the number of array arguments that the function takes. These are required to be at
the beginning of its argument list.

The ret_spec argument specifies the structure of the function’s return value.

14 Chapter 2. Foundations

pwkit, Release 0.6.99

•0 indicates that the value has the same shape as the (broadcasted) vector arguments. If the arguments are
all scalar, the return value will be scalar too.

•1 indicates that the value is an array of higher rank than the input arguments. For instance, if the input has
shape (3,), the output might have shape (4,4,3); in general, if the input has shape s, the output will
have shape t + s for some tuple t. If the arguments are all scalar, the output will have a shape of just t.
The numpy.asarray() function is called on such arguments, so (for instance) you can return a list of
arrays [a, b] and it will be converted into a numpy.ndarray.

•None indicates that the value is completely independ of the inputs. It is returned as-is.

•A tuple t indicates that the return value is also a tuple. The elements of the ret_spec tuple should contain
the values listed above, and each element of the return value will be handled accordingly.

The default ret_spec is 0, i.e. the return value is expected to be an array of the same shape as the argument(s).

If force_float is true (the default), the input arrays will be converted to floating-point types if necessary (with
numpy.asfarray()) before being passed to the function.

Example:

@numutil.broadcastize (2, ret_spec=(0, 1, None)):
def myfunction (x, y, extra_arg):

print ('a random non-vector argument is:', extra_arg)
z = x + y
z[np.where (y)] *= 2
higher_vector = [x, y, z]
return z, higher_vector, 'hello'

2.3.2 Convenience functions for statistics

pwkit.numutil.rms(x)
Placeholder.

pwkit.numutil.weighted_mean(values, uncerts, **kwargs)
Placeholder.

pwkit.numutil.weighted_mean_df(df, **kwargs)
The same as weighted_mean(), except the argument is expected to be a two-column
pandas.DataFrame whose first column gives the data values and second column gives their uncer-
tainties. Returns (weighted_mean, uncertainty_in_mean).

pwkit.numutil.weighted_variance(x, weights)
Placeholder.

2.3.3 Convenience functions for pandas.DataFrame objects

pwkit.numutil.reduce_data_frame(df, chunk_slicers, avg_cols=(), uavg_cols=(), minmax_cols=(),
nchunk_colname=u’nchunk’, uncert_prefix=u’u’,
min_points_per_chunk=3)

Placeholder.

pwkit.numutil.reduce_data_frame_evenly_with_gaps(df, valcol, target_len, maxgap,
**kwargs)

Placeholder.

pwkit.numutil.slice_around_gaps(values, maxgap)
Placeholder.

2.3. Numerical utilities (pwkit.numutil) 15

pwkit, Release 0.6.99

pwkit.numutil.slice_evenly_with_gaps(values, target_len, maxgap)
Placeholder.

pwkit.numutil.dfsmooth(window, df, ucol, k=None)
Placeholder.

pwkit.numutil.fits_recarray_to_data_frame(recarray, drop_nonscalar_ok=True)
Convert a FITS data table, stored as a Numpy record array, into a Pandas DataFrame object. By default, non-
scalar columns are discarded, but if drop_nonscalar_ok is False then a ValueError is raised. Column names
are lower-cased. Example:

from pwkit import io, numutil
hdu_list = io.Path ('my-table.fits').read_fits ()
assuming the first FITS extension is a binary table:
df = numutil.fits_recarray_to_data_frame (hdu_list[1].data)

FITS data are big-endian, whereas nowadays almost everything is little-endian. This seems to be an issue for
Pandas DataFrames, where df[[’col1’, ’col2’]] triggers an assertion for me if the underlying data are
not native-byte-ordered. This function normalizes the read-in data to native endianness to avoid this.

See also pwkit.io.Path.read_fits_bintable().

pwkit.numutil.data_frame_to_astropy_table(dataframe)
This is a backport of the Astropy method astropy.table.table.Table.from_pandas(). It converts
a Pandas pandas.DataFrame object to an Astropy astropy.table.Table.

pwkit.numutil.usmooth(window, uncerts, *data, **kwargs)
Placeholder.

pwkit.numutil.page_data_frame(df, pager_argv=[u’less’], **kwargs)
Render a DataFrame as text and send it to a terminal pager program (e.g. less), so that one can browse a full
table conveniently.

df The DataFrame to view

pager_argv: default [’less’] A list of strings passed to subprocess.Popen that launches the pager
program

kwargs Additional keywords are passed to pandas.DataFrame.to_string().

Returns None. Execution blocks until the pager subprocess exits.

2.3.4 Parallelized versions of simple math algorithms

pwkit.numutil.parallel_newton(func, x0, fprime=None, par_args=(), simple_args=(), tol=1.48e-
8, maxiter=50, parallel=True, **kwargs)

Placeholder. A parallelized version of scipy.optimize.newton().

pwkit.numutil.parallel_quad(func, a, b, par_args=(), simple_args=(), parallel=True, **kwargs)
Placeholder. A parallelized version of scipy.integrate.quad().

2.3.5 Tophat and Step Functions

pwkit.numutil.unit_tophat_ee(x)
Placeholder.

pwkit.numutil.unit_tophat_ei(x)
Placeholder.

16 Chapter 2. Foundations

https://docs.python.org/library/subprocess.html#subprocess.Popen

pwkit, Release 0.6.99

pwkit.numutil.unit_tophat_ie(x)
Placeholder.

pwkit.numutil.unit_tophat_ii(x)
Placeholder.

pwkit.numutil.make_tophat_ee(lower, upper)
Placeholder.

pwkit.numutil.make_tophat_ei(lower, upper)
Placeholder.

pwkit.numutil.make_tophat_ie(lower, upper)
Placeholder.

pwkit.numutil.make_tophat_ii(lower, upper)
Placeholder.

pwkit.numutil.make_step_lcont(transition)
Placeholder.

pwkit.numutil.make_step_rcont(transition)
Placeholder.

2.4 Framework for easy parallelized processing (pwkit.parallel)

parallel - Tools for parallel processing.

Functions:

make_parallel_helper Return an object that sets up parallel computations.

See the make_parallel_helper() documentation for more details, but in short:

from pwkit.parallel import make_parallel_helper

def my_parallelizable_function (arg1, arg1, parallel=True):
phelp = make_parallel_helper (parallel)
...

with phelp.get_map () as map:
results1 = map (my_subfunc1, subargs1)
...
results2 = map (my_subfunc2, subargs2)

... do stuff with results1 and results2 ...

Setting parallel=True will use all cores. parallel=0.5 will use about half your machine. parallel=False will use serial
processing. The helper must be used as a context manager (the “with” statement) because the parallel computation
may involve creating and destroying heavyweight resources (namely, child processes).

Along with standard map, ParallelHelper instances support a “partially-Pickling” map-like function ppmap that works
around Pickle-related limitations in the multiprocessing library. See the docs for pwkit.parallel.serial_ppmap for usage
information.

pwkit.parallel.make_parallel_helper(parallel_arg, **kwargs)
Return a ParallelHelper object that can be used for easy parallelization of computations. parallel_arg is an
object that lets the caller easily specify the kind of parallelization they are interested in. Allowed values are:

False Serial processing only.

2.4. Framework for easy parallelized processing (pwkit.parallel) 17

pwkit, Release 0.6.99

True Parallel processing using all available cores.

1 Equivalent to False.

(other positive integer) Parallel processing using the specified number of cores.

x, 0 < x < 1 Parallel processing using about (x*N) cores, where N is the total number of cores in the system.
Note that the meanings of 0.99 and 1 as arguments are very different.

(ParallelHelper instance) Returns the instance.

The **kwargs are passed on to the appropriate ParallelHelper constructor, if the caller wants to do something
tricky.

Expected usage is:

from pwkit.parallel import make_parallel_helper

def sub_operation (arg):
... do some computation ...
return result

def my_parallelizable_function (arg1, arg2, parallel=True):
phelp = make_parallel_helper (parallel)

with phelp.get_map () as map:
op_results = map (sub_operation, args)

... reduce "op_results" in some way ...
return final_result

This means that my_parallelizable_function doesn’t have to worry about all of the various fancy things the caller
might want to do in terms of special parallel magic.

Note that sub_operation above must be defined in a stand-alone fashion because of the way Python’s multipro-
cessing module works. This can be worked around somewhat with the special get_ppmap variant. This returns
a “partially-Pickling” map operation – with a different calling signature – that allows un-Pickle-able values to
be used. See the documentation for pwkit.parallel.serial_ppmap for usage information.

2.5 Quick enumerations of constant values (pwkit.simpleenum)

The pwkit.simpleenum module contains a single decorator function for creating “enumerations”, by which we
mean a group of named, un-modifiable values. For example:

from pwkit.simpleenum import enumeration

@enumeration
class Constants (object):
period_days = 2.771
period_hours = period_days * 24
n_iters = 300
etc

def myfunction ():
print ('the period is', Constants.period_hours, 'hours')

The class declaration syntax is handy here because it lets you define new values in relation to old values. In the
above example, you cannot change any of the properties of Constants once it is constructed.

18 Chapter 2. Foundations

pwkit, Release 0.6.99

Important: If you populate an enumeration with a mutable data type, however, we’re unable to prevent you from
modifying it. For instance, if you do this:

@enumeration
class Dangerous (object):
mutable = [1, 2]
immutable = (1, 2)

You can then do something like write Dangerous.mutable.append (3) and modify the value stored in the
enumeration. If you’re concerned about this, make sure to populate the enumeration with immutable classes such as
tuple, frozenset, int, and so on.

pwkit.simpleenum.enumeration(cls)
A very simple decorator for creating enumerations. Unlike Python 3.4 enumerations, this just gives a way to use
a class declaration to create an immutable object containing only the values specified in the class.

If the attribute __pickle_compat__ is set to True in the decorated class, the resulting enumeration value
will be callable such that EnumClass(x) = x. This is needed to unpickle enumeration values that were
previously implemented using enum.Enum.

2.5. Quick enumerations of constant values (pwkit.simpleenum) 19

https://docs.python.org/library/stdtypes.html#frozenset
https://docs.python.org/library/functions.html#int

pwkit, Release 0.6.99

20 Chapter 2. Foundations

CHAPTER 3

Scientific Algorithms

This documentation has a lot of stubs.

3.1 Basic astronomical calculations (pwkit.astutil)

This module collects many utilities for performing basic astronomical calculations, including:

• Useful Constants

• Sexagesimal Notation

• Working with Angles

• Simple Operations on 2D Gaussians

• Basic Astrometry

3.1.1 Useful Constants

pwkit.astutil.pi
Placeholder.

pwkit.astutil.twopi
Placeholder.

pwkit.astutil.halfpi
Placeholder.

pwkit.astutil.R2A
Placeholder.

pwkit.astutil.A2R
Placeholder.

pwkit.astutil.R2D
Placeholder.

pwkit.astutil.D2R
Placeholder.

pwkit.astutil.R2H
Placeholder.

21

pwkit, Release 0.6.99

pwkit.astutil.H2R
Placeholder.

pwkit.astutil.F2S
Placeholder.

pwkit.astutil.S2F
Placeholder.

pwkit.astutil.J2000
Placeholder.

3.1.2 Sexagesimal Notation

pwkit.astutil.fmthours(radians, norm=’wrap’, precision=3, seps=’::’)
Placeholder.

pwkit.astutil.fmtdeglon(radians, norm=’wrap’, precision=2, seps=’::’)
Placeholder.

pwkit.astutil.fmtdeglat(radians, norm=’raise’, precision=2, seps=’::’)
Placeholder.

pwkit.astutil.fmtradec(rarad, decrad, precision=2, raseps=’::’, decseps=’::’, intersep=’ ‘)
Placeholder.

pwkit.astutil.parsehours(hrstr)
Placeholder.

pwkit.astutil.parsedeglat(latstr)
Placeholder.

pwkit.astutil.parsedeglon(lonstr)
Placeholder.

3.1.3 Working with Angles

pwkit.astutil.angcen(a)
Placeholder.

pwkit.astutil.orientcen(a)
Placeholder.

pwkit.astutil.sphdist(lat1, lon1, lat2, lon2)
Placeholder.

pwkit.astutil.sphbear(lat1, lon1, lat2, lon2, tol=1e-15)
Placeholder.

pwkit.astutil.sphofs(lat1, lon1, r, pa, tol=1e-2, rmax=None)
Placeholder.

pwkit.astutil.parang(hourangle, declination, latitude)
Placeholder.

22 Chapter 3. Scientific Algorithms

pwkit, Release 0.6.99

3.1.4 Simple Operations on 2D Gaussians

pwkit.astutil.gaussian_convolve(maj1, min1, pa1, maj2, min2, pa2)
Placeholder.

pwkit.astutil.gaussian_deconvolve(smaj, smin, spa, bmaj, bmin, bpa)
Placeholder.

3.1.5 Basic Astrometry

pwkit.astutil.get_2mass_epoch(tmra, tmdec, debug=False)
Placeholder.

pwkit.astutil.get_simbad_astrometry_info(ident, items=..., debug=False)
Placeholder.

class pwkit.astutil.AstrometryInfo(simbadident=None, **kwargs)
Placeholder.

AstrometryInfo.verify(complain=True)
Placeholder.

AstrometryInfo.predict(mjd, complain=True, n=20000)
Placeholder.

AstrometryInfo.prin_prediction(ptup)
Placeholder.

AstrometryInfo.fill_from_simbad(ident, debug=False)
Placeholder.

3.2 File-format-agnostic loading of astronomical images
(pwkit.astimage)

pwkit.astimage – generic loading of (radio) astronomical images

Use open (path, mode) to open an astronomical image, regardless of its file format.

The emphasis of this module is on getting 90%-good-enough semantics and a really, genuinely, uniform interface.
This can be tough to achieve.

class pwkit.astimage.AstroImage(path, mode)
An astronomical image.

path The filesystem path of the image.

mode Its access mode: ‘r’ for read, ‘rw’ for read/write.

shape The data shape, like numpy.ndarray.shape.

bmaj If not None, the restoring beam FWHM major axis in radians.

bmin If not None, the restoring beam FWHM minor axis in radians.

bpa If not None, the restoring beam position angle (east from celestial north) in radians.

units Lower-case string describing image units (e.g., jy/beam, jy/pixel). Not standardized between formats.

pclat Latitude (usually dec) of the pointing center in radians.

3.2. File-format-agnostic loading of astronomical images (pwkit.astimage) 23

pwkit, Release 0.6.99

pclon Longitude (usually RA) of the pointing center in radians.

charfreq Characteristic observing frequency of the image in GHz.

mjd Mean MJD of the observations.

axdescs If not None, list of strings describing the axis types. Not standardized.

size The number of pixels in the image (=shape.prod ()).

Methods:

close Close the image.

read Read all of the data.

write Rewrite all of the data.

toworld Convert pixel coordinates to world coordinates.

topixel Convert world coordinates to pixel coordinates.

simple Convert to a 2D lat/lon image.

subimage Extract a sub-cube of the image.

save_copy Save a copy of the image.

save_as_fits Save a copy of the image in FITS format.

delete Delete the on-disk image.

subimage(pixofs, shape)
Extract a sub-cube of this image.

Both pixofs and shape should be integer arrays with as many elements as this image has axes. Thinking
of this operation as taking a Python slice of an N-dimensional cube, the i’th axis of the sub-image is slices
from pixofs[i] to pixofs[i] + shape[i].

class pwkit.astimage.MIRIADImage(path, mode)
A MIRIAD format image. Requires the mirtask module from miriad-python.

class pwkit.astimage.PyrapImage(path, mode)
A CASA-format image loaded with the ‘pyrap’ Python module.

class pwkit.astimage.FITSImage(path, mode)
A FITS format image.

class pwkit.astimage.SimpleImage(parent)
A 2D, latitude/longitude image, referenced to a parent image.

3.3 The Bayesian Blocks algorithm (pwkit.bblocks)

pwkit.bblocks - Bayesian Blocks analysis, with a few extensions.

Bayesian Blocks analysis for the “time tagged” case described by Scargle+ 2013. Inspired by the bayesian_blocks
implementation by Jake Vanderplas in the AstroML package, but that turned out to have some limitations.

We have iterative determination of the best number of blocks (using an ad-hoc routine described in Scargle+ 2013)
and bootstrap-based determination of uncertainties on the block heights (ditto).

Functions are:

bin_bblock() Bayesian Blocks analysis with counts and bins.

24 Chapter 3. Scientific Algorithms

pwkit, Release 0.6.99

tt_bblock() BB analysis of time-tagged events.

bs_tt_bblock() Like tt_bblock() with bootstrap-based uncertainty assessment. NOTE: the uncertainties
are not very reliable!

pwkit.bblocks.bin_bblock(widths, counts, p0=0.05)
Fundamental Bayesian Blocks algorithm. Arguments:

widths - Array of consecutive cell widths. counts - Array of numbers of counts in each cell. p0=0.05 - Probability
of preferring solutions with additional bins.

Returns a Holder with:

blockstarts - Start times of output blocks. counts - Number of events in each output block. finalp0 - Final
value of p0, after iteration to minimize nblocks. nblocks - Number of output blocks. ncells - Number of input
cells/bins. origp0 - Original value of p0. rates - Event rate associated with each block. widths - Width of each
output block.

pwkit.bblocks.tt_bblock(tstarts, tstops, times, p0=0.05)
Bayesian Blocks for time-tagged events. Arguments:

tstarts - Array of input bin start times. tstops - Array of input bin stop times. times - Array of event arrival times.
p0=0.05 - Probability of preferring solutions with additional bins.

Returns a Holder with:

blockstarts - Start times of output blocks. counts - Number of events in each output block. finalp0 - Final value
of p0, after iteration to minimize nblocks. ledges - Times of left edges of output blocks. midpoints - Times of
midpoints of output blocks. nblocks - Number of output blocks. ncells - Number of input cells/bins. origp0
- Original value of p0. rates - Event rate associated with each block. redges - Times of right edges of output
blocks. widths - Width of each output block.

Bin start/stop times are best derived from a 1D Voronoi tesselation of the event arrival times, with some kind of
global observation start/stop time setting the extreme edges.

pwkit.bblocks.bs_tt_bblock(times, tstarts, tstops, p0=0.05, nbootstrap=512)
Bayesian Blocks for time-tagged events with bootstrapping uncertainty assessment. THE UNCERTAINTIES
ARE NOT VERY GOOD! Arguments:

tstarts - Array of input bin start times. tstops - Array of input bin stop times. times - Array of event arrival times.
p0=0.05 - Probability of preferring solutions with additional bins. nbootstrap=512 - Number of bootstrap runs
to perform.

Returns a Holder with:

blockstarts - Start times of output blocks. bsrates - Mean event rate in each bin from bootstrap analysis. bsrstds -
~Uncertainty: stddev of event rate in each bin from bootstrap analysis. counts - Number of events in each output
block. finalp0 - Final value of p0, after iteration to minimize nblocks. ledges - Times of left edges of output
blocks. midpoints - Times of midpoints of output blocks. nblocks - Number of output blocks. ncells - Number
of input cells/bins. origp0 - Original value of p0. rates - Event rate associated with each block. redges - Times
of right edges of output blocks. widths - Width of each output block.

3.4 Constants in CGS units (pwkit.cgs)

pwkit.cgs - Physical constants in CGS.

Specifically, ESU-CGS im which the electron charge is measured in esu Franklin statcoulomb.

a0 - Bohr radius [cm] alpha - Fine structure constant [ø] arad - Radiation constant [erg/cm³/K] aupercm - AU per cm
c - Speed of light [cm/s] cgsperjy - [erg/s/cm²/Hz] per Jy cmperau - cm per AU cmperpc - cm per parsec conjaaev -

3.4. Constants in CGS units (pwkit.cgs) 25

pwkit, Release 0.6.99

eV/Angstrom conjugation factor: AA = conjaaev / eV [Å·eV] e - electron charge [esu] ergperev - erg per eV euler -
Euler’s constant (2.71828...) [ø] evpererg - eV per erg G - Gravitational constant [cm³/g/s²] h - Planck’s constant [erg
s] hbar - Reduced Planck’s constant [erg·s] jypercgs - Jy per [erg/s/cm²/Hz] k - Boltzmann’s constant [erg/K] lsun -
Luminosity of the Sun [erg/s] me - Mass of the electron [g] mearth - Mass of the Earth [g] mjup - Mass of Jupiter [g]
mp - Mass of the proton [g] msun - Mass of the Sun [g] mu_e - Magnetic moment of the electron [esu·cm²/s] pcpercm
- parsec per cm pi - Pi [ø] r_e - Classical radius of the electron [cm] rearth - Radius of the earth [cm] rjup - Radius of
Jupiter [cm] rsun - Radius of the Sun [cm] ryd1 - Rydberg energy [erg] sigma - Stefan-Boltzmann constant [erg/s/K]
sigma_T - Thomson cross section of the electron [cm²] spersyr - Seconds per sidereal year syrpers - Sidereal years per
second tsun - Effective temperature of the Sun [K]

Functions:

blambda - Planck function (Hz, K) -> erg/s/cm²/Hz/sr. bnu - Planck function (cm, K) -> erg/s/cm²/cm/sr. exp - Numpy
exp() function. log - Numpy log() function. log10 - Numpy log10() function. sqrt - Numpy sqrt() function.

For reference: the esu has dimensions of g^(1/2) cm^(3/2) s^-1. Electric and magnetic field have g^(1/2) cm^(-1/2)
s^-1. [esu * field] = dyne.

3.5 Representations of and computations with ellipses
(pwkit.ellipses)

pwkit.ellipses - utilities for manipulating 2D Gaussians and ellipses

XXXXXXX XXX this code is in an incomplete state of being vectorized!!! XXXXXXX

Useful for sources and bivariate error distributions. We can express the shape of the function in several ways, which
have different strengths and weaknesses:

• “biv”, as in Gaussian bivariate: sigma x, sigma y, cov(x,y)

• “ell”, as in ellipse: major, minor, PA [*]

• “abc”: coefficients such that z = exp (ax² + bxy + cy²)

[*] Any slice through a 2D Gaussian is an ellipse. Ours is defined such it is the same as a Gaussian bivariate when
major = minor.

Note that when considering astronomical position angles, conventionally defined as East from North, the Dec/lat axis
should be considered the X axis and the RA/long axis should be considered the Y axis.

NOTE: Pineau et al 2011A&A...527A.126P has some relevant equations, including ones for computing the overlap of
two error ellipses, which is something I’ve had trouble figuring out in the past.

pwkit.ellipses.sigmascale(nsigma)
Say we take a Gaussian bivariate and convert the parameters of the distribution to an ellipse (major, minor, PA).
By what factor should we scale those axes to make the area of the ellipse correspond to the n-sigma confidence
interval?

Negative or zero values result in NaN.

pwkit.ellipses.clscale(cl)
Say we take a Gaussian bivariate and convert the parameters of the distribution to an ellipse (major, minor, PA).
By what factor should we scale those axes to make the area of the ellipse correspond to the confidence interval
CL? (I.e. 0 < CL < 1)

pwkit.ellipses.bivell(sx, sy, cxy)
Given the parameters of a Gaussian bivariate distribution, compute the parameters for the equivalent 2D Gaus-
sian in ellipse form (major, minor, pa).

Inputs:

26 Chapter 3. Scientific Algorithms

pwkit, Release 0.6.99

•sx: standard deviation (not variance) of x var

•sy: standard deviation (not variance) of y var

•cxy: covariance (not correlation coefficient) of x and y

Outputs:

•mjr: major axis of equivalent 2D Gaussian (sigma, not FWHM)

•mnr: minor axis

•pa: position angle, rotating from +x to +y

Lots of sanity-checking because it’s obnoxiously easy to have numerics that just barely blow up on you.

pwkit.ellipses.bivnorm(sx, sy, cxy)
Given the parameters of a Gaussian bivariate distribution, compute the correct normalization for the equivalent
2D Gaussian. It’s 1 / (2 pi sqrt (sx**2 sy**2 - cxy**2). This function adds a lot of sanity checking.

Inputs:

•sx: standard deviation (not variance) of x var

•sy: standard deviation (not variance) of y var

•cxy: covariance (not correlation coefficient) of x and y

Returns: the scalar normalization

pwkit.ellipses.bivabc(sx, sy, cxy)
Compute nontrivial parameters for evaluating a bivariate distribution as a 2D Gaussian. Inputs:

•sx: standard deviation (not variance) of x var

•sy: standard deviation (not variance) of y var

•cxy: covariance (not correlation coefficient) of x and y

Returns: (a, b, c), where z = k exp (ax² + bxy + cy²)

The proper value for k can be obtained from bivnorm().

pwkit.ellipses.databiv(xy, coordouter=False, **kwargs)
Compute the main parameters of a bivariate distribution from data. The parameters are returned in the same
format as used in the rest of this module.

•xy: a 2D data array of shape (2, nsamp) or (nsamp, 2)

•coordouter: if True, the coordinate axis is the outer axis; i.e. the shape is (2, nsamp). Otherwise, the
coordinate axis is the inner axis; i.e. shape is (nsamp, 2).

Returns: (sx, sy, cxy)

In both cases, the first slice along the coordinate axis gives the X data (i.e., xy[0] or xy[:,0]) and the second slice
gives the Y data (xy[1] or xy[:,1]).

pwkit.ellipses.bivrandom(x0, y0, sx, sy, cxy, size=None)
Compute random values distributed according to the specified bivariate distribution.

Inputs:

•x0: the center of the x distribution (i.e. its intended mean)

•y0: the center of the y distribution

•sx: standard deviation (not variance) of x var

•sy: standard deviation (not variance) of y var

3.5. Representations of and computations with ellipses (pwkit.ellipses) 27

pwkit, Release 0.6.99

•cxy: covariance (not correlation coefficient) of x and y

•size (optional): the number of values to compute

Returns: array of shape (size, 2); or just (2,), if size was not specified.

The bivariate parameters of the generated data are approximately recoverable by calling ‘databiv(retval)’.

pwkit.ellipses.ellpoint(mjr, mnr, pa, th)
Compute a point on an ellipse parametrically. Inputs:

•mjr: major axis (sigma not FWHM) of the ellipse

•mnr: minor axis (sigma not FWHM) of the ellipse

•pa: position angle (from +x to +y) of the ellipse, radians

•th: the parameter, 0 <= th < 2pi: the eccentric anomaly

Returns: (x, y)

th may be a vector, in which case x and y will be as well.

pwkit.ellipses.elld2(x0, y0, mjr, mnr, pa, x, y)
Given an 2D Gaussian expressed as an ellipse (major, minor, pa), compute a “squared distance parameter” such
that

z = exp (-0.5 * d2)

Inputs:

•x0: position of Gaussian center on x axis

•y0: position of Gaussian center on y axis

•mjr: major axis (sigma not FWHM) of the Gaussian

•mnr: minor axis (sigma not FWHM) of the Gaussian

•pa: position angle (from +x to +y) of the Gaussian, radians

•x: x coordinates of the locations for which to evaluate d2

•y: y coordinates of the locations for which to evaluate d2

Returns: d2, distance parameter defined as above.

x0, y0, mjr, and mnr may be in any units so long as they’re consistent. x and y may be arrays (of the same
shape), in which case d2 will be an array as well.

pwkit.ellipses.ellbiv(mjr, mnr, pa)
Given a 2D Gaussian expressed as an ellipse (major, minor, pa), compute the equivalent parameters for a Gaus-
sian bivariate distribution. We assume that the ellipse is normalized so that the functions evaluate identicall for
major = minor.

Inputs:

•mjr: major axis (sigma not FWHM) of the Gaussian

•mnr: minor axis (sigma not FWHM) of the Gaussian

•pa: position angle (from +x to +y) of the Gaussian, radians

Returns:

•sx: standard deviation (not variance) of x var

•sy: standard deviation (not variance) of y var

28 Chapter 3. Scientific Algorithms

pwkit, Release 0.6.99

•cxy: covariance (not correlation coefficient) of x and y

pwkit.ellipses.ellabc(mjr, mnr, pa)
Given a 2D Gaussian expressed as an ellipse (major, minor, pa), compute the nontrivial parameters for its
evaluation.

•mjr: major axis (sigma not FWHM) of the Gaussian

•mnr: minor axis (sigma not FWHM) of the Gaussian

•pa: position angle (from +x to +y) of the Gaussian, radians

Returns: (a, b, c), where z = exp (ax² + bxy + cy²)

pwkit.ellipses.ellplot(mjr, mnr, pa)
Utility for debugging.

pwkit.ellipses.abcell(a, b, c)
Given the nontrivial parameters for evaluation a 2D Gaussian as a polynomial, compute the equivalent ellipse
parameters (major, minor, pa)

Inputs: (a, b, c), where z = exp (ax² + bxy + cy²)

Returns:

•mjr: major axis (sigma not FWHM) of the Gaussian

•mnr: minor axis (sigma not FWHM) of the Gaussian

•pa: position angle (from +x to +y) of the Gaussian, radians

pwkit.ellipses.abcd2(x0, y0, a, b, c, x, y)
Given an 2D Gaussian expressed as the ABC polynomial coefficients, compute a “squared distance parameter”
such that

z = exp (-0.5 * d2)

Inputs:

•x0: position of Gaussian center on x axis

•y0: position of Gaussian center on y axis

•a: such that z = exp (ax² + bxy + cy²)

•b: see above

•c: see above

•x: x coordinates of the locations for which to evaluate d2

•y: y coordinates of the locations for which to evaluate d2

Returns: d2, distance parameter defined as above.

This is pretty trivial.

3.6 Modeling sources in images (pwkit.immodel)

pwkit.immodel - Analytical modeling of astronomical images.

This is derived from copl/pylib/bgfit.py and copl/bin/imsrcdebug. I keep on wanting this code so I should put it
somewhere more generic. Such as here. Also, given the history, there are a lot more bells and whistles in the code than
the currently exposed UI really needs.

3.6. Modeling sources in images (pwkit.immodel) 29

pwkit, Release 0.6.99

3.7 Bayesian confidence intervals for count rates (pwkit.kbn_conf)

pwkit.kbn_conf - calculate Poisson-like confidence intervals assuming a background

This module implements the Bayesian confidence intervals for Poisson processes in a background using the approach
described in Kraft, Burrows, & Nousek (1991). That paper provides tables of values; this module can calculate
intervals for arbitrary inputs. Requires scipy.

This implementation almost directly transcribes the equations. We do, however, work in log-gamma space to try to
avoid overflows with large values of N or B.

Functions:

kbn_conf - Compute a single confidence limit. vec_kbn_conf - Vectorized version of kbn_conf.

TODO: tests!

pwkit.kbn_conf.kbn_conf(N, B, CL)
Given a (integer) number of observed Poisson events N and a (real) expected number of background events B
and a confidence limit CL (between 0 and 1), return the confidence interval on the source event rate.

Returns: (Smin, Smax)

This interval is calculated using the Bayesian formalism of Kraft, Burrows, & Nousek (1991), which assumes
no uncertainty in B and returns the smallest possible interval that satisfies the above properties.

Example: in a certain time interval, 3 events were recorded. Based on external knowledge, it is expected that on
average 0.5 background events will be recorded in the same interval. The 95% confidence interval on the source
event rate is

>>> kbn_conf.kbn_conf (3, 0.5, 0.95)
<<< (0.22156, 7.40188)

which agrees with the entry in Table 2 of KBN91.

Reference info: 1991ApJ...374..344K, doi:10.1086/170124

3.8 Nonlinear least-squares minimization with Levenberg-Marquardt
(pwkit.lmmin)

pwkit.lmmin - Pythonic, Numpy-based Levenberg-Marquardt least-squares minimizer

Basic usage:

from pwkit.lmmin import Problem, ResidualProblem

def yfunc (params, vals):
vals[:] = {stuff with params}

def jfunc (params, jac):
jac[i,j] = {deriv of val[j] w.r.t. params[i]}
i.e. jac[i] = {deriv of val wrt params[i]}

p = Problem (npar, nout, yfunc, jfunc=None)
solution = p.solve (guess)

p2 = Problem ()
p2.set_npar (npar) # enables configuration of parameter meta-info
p2.set_func (nout, yfunc, jfunc)

30 Chapter 3. Scientific Algorithms

pwkit, Release 0.6.99

Main Solution properties:

prob - The Problem. status - Set of strings; presence of ‘ftol’, ‘gtol’, or ‘xtol’ suggests success. params
- Final parameter values. perror - 1𝜎 uncertainties on params. covar - Covariance matrix of parameters.
fnorm - Final norm of function output. fvec - Final vector of function outputs. fjac - Final Jacobian matrix
of d(fvec)/d(params).

Automatic least-squares model-fitting (subtracts “observed” Y values and multiplies by inverse errors):

def yrfunc (params, modelyvalues): modelyvalues[:] = {stuff with params}

def yjfunc (params, modelyjac): jac[i,j] = {deriv of modelyvalue[j] w.r.t. params[i]}

p.set_residual_func (yobs, errinv, yrfunc, jrfunc, reckless=False) p = ResidualProblem (npar, yobs, errinv,
yrfunc, jrfunc=None, reckless=False)

Parameter meta-information:

p.p_value (paramindex, value, fixed=False) p.p_limit (paramindex, lower=-inf, upper=+inf) p.p_step
(paramindex, stepsize, maxstep=info, isrel=False) p.p_side (paramindex, sidedness) # one of ‘auto’, ‘pos’,
‘neg’, ‘two’ p.p_tie (paramindex, tiefunc) # pval = tiefunc (params)

solve() status codes:

Solution.status is a set of strings. The presence of a string in the set means that the specified condition was active
when the iteration terminated. Multiple conditions may contribute to ending the iteration. The algorithm likely did not
converge correctly if none of ‘ftol’, ‘xtol’, or ‘gtol’ are in status upon termination.

‘ftol’ (MINPACK/MPFIT equiv: 1, 3) “Termination occurs when both the actual and predicted relative reductions
in the sum of squares are at most FTOL. Therefore, FTOL measures the relative error desired in the sum of
squares.”

‘xtol’ (MINPACK/MPFIT equiv: 2, 3) “Termination occurs when the relative error between two consecutive iter-
ates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution.”

‘gtol’ (MINPACK/MPFIT equiv: 4) “Termination occurs when the cosine of the angle between fvec and any column
of the jacobian is at most GTOL in absolute value. Therefore, GTOL measures the orthogonality desired between
the function vector and the columns of the jacobian.”

‘maxiter’ (MINPACK/MPFIT equiv: 5) Number of iterations exceeds maxiter.

‘feps’ (MINPACK/MPFIT equiv: 6) “ftol is too small. no further reduction in the sum of squares is possible.”

‘xeps’ (MINPACK/MPFIT equiv: 7) “xtol is too small. no further improvement in the approximate solution x is
possible.”

‘geps’ (MINPACK/MPFIT equiv: 8) “gtol is too small. fvec is orthogonal to the columns of the jacobian to machine
precision.”

(This docstring contains only usage information. For important information regarding provenance, license, and aca-
demic references, see comments in the module source code.)

class pwkit.lmmin.Problem(npar=None, nout=None, yfunc=None, jfunc=None, solclass=<class
‘pwkit.lmmin.Solution’>)

A Levenberg-Marquardt problem to be solved. Attributes:

damp Tanh damping factor of extreme function values.

debug_calls If true, information about function calls is printed.

debug_jac If true, information about jacobian calls is printed.

diag Scale factors for parameter derivatives, used to condition the problem.

epsilon The floating-point epsilon value, used to determine step sizes in automatic Jacobian computation.

3.8. Nonlinear least-squares minimization with Levenberg-Marquardt (pwkit.lmmin) 31

pwkit, Release 0.6.99

factor The step bound is factor times the initial value times diag.

ftol The relative error desired in the sum of squares.

gtol The orthogonality desired between the function vector and the columns of the Jacobian.

maxiter The maximum number of iterations allowed.

normfunc A function to compute the norm of a vector.

solclass A factory for Solution instances.

xtol The relative error desired in the approximate solution.

Methods:

copy Duplicate this Problem.

get_ndof Get the number of degrees of freedom in the problem.

get_nfree Get the number of free parameters (fixed/tied/etc pars are not free).

p_value Set the initial or fixed value of a parameter.

p_limit Set limits on parameter values.

p_step Set the stepsize for a parameter.

p_side Set the sidedness with which auto-derivatives are computed for a par.

p_tie Set a parameter to be a function of other parameters.

set_func Set the function to be optimized.

set_npar Set the number of parameters; allows p_* to be called.

set_residual_func Set the function to a standard model-fitting style.

solve Run the algorithm.

solve_scipy Run the algorithm using the Scipy implementation (for testing).

p_side(idx, sidedness)
Acceptable values for sidedness are “auto”, “pos”, “neg”, and “two”.

class pwkit.lmmin.Solution(prob)
A parameter solution from the Levenberg-Marquard algorithm. Attributes:

ndof - The number of degrees of freedom in the problem. prob - The Problem. status - A set of strings indicating
which stop condition(s) arose. niter - The number of iterations needed to obtain the solution. perror - The 1𝜎
errors on the final parameters. params - The final best-fit parameters. covar - The covariance of the function
parameters. fnorm - The final function norm. fvec - The final function outputs. fjac - The final Jacobian. nfev
- The number of function evaluations needed to obtain the solution. njev - The number of Jacobian evaluations
needed to obtain the solution.

The presence of ‘ftol’, ‘gtol’, or ‘xtol’ in status suggests success.

3.9 Fitting generic models with least-squares minimization
(pwkit.lsqmdl)

pwkit.lsqmdl - model data with least-squares fitting

Classes:

32 Chapter 3. Scientific Algorithms

pwkit, Release 0.6.99

Model - Modeling with any function using Levenberg-Marquardt. Parameter - Information about a specific model
parameter. PolynomialModel - Modeling with polynomials. ScaleModel - Modeling with a single scale factor. Com-
posedModel - Modeling with combinations of pluggable components.

ModelComponent - Base class for ComposedModel components. AddConstantComponent - Adds a single value
to all data points. AddValuesComponent - Adds a parameter for every data point. AddPolynomialComponent -
Adds a polynomial. SeriesComponent - Apply a set of subcomponents in series. MatMultComponent - Combine
subcomponents in a matrix multiplication. ScaleComponent - Multiplies the data by a single value.

Usage:

m = Model (func, data, [invsigma], [args]).solve (guess).print_soln ()
func takes (p1, p2, p3[, *args]) and returns model data

m = PolynomialModel (maxexponent, x, data, [invsigma]).solve ().plot ()
m = ScaleModel (x, data, [invsigma]).solve ().show_cov ()

data = m*x

The invsigma are inverse sigmas, NOT inverse variances (the usual statistical weights). Since most applications deal
in sigmas, take care to write:

m = Model (func, data, 1./uncerts) # right!

not:

m = Model (func, data, uncerts) # WRONG

If you have zero uncertainty on a measurement, too bad.

class pwkit.lsqmdl.PolynomialModel(maxexponent, x, data, invsigma=None)
Least-squares polynomial fit.

Because this is a very specialized kind of problem, we don’t need an initial guess to solve, and we can use fast
built-in numerical routines.

The output parameters are named “a0”, “a1”, ... and are stored in that order in PolynomialModel.params[]. We
have y = sum(x**i * a[i]), so “a2” = “params[2]” is the quadratic term, etc.

This model does not give uncertainties on the derived coefficients. The as_nonlinear() method can be use to get
a Model instance with uncertainties.

Methods:

as_nonlinear - Return a (lmmin-based) Model equivalent to self.

as_nonlinear(params=None)
Return a Model equivalent to this object. The nonlinear solver is less efficient, but lets you freeze parame-
ters, compute uncertainties, etc.

If the params argument is provided, solve() will be called on the returned object with those parameters. If
it is None and this object has parameters in self.params, those will be use. Otherwise, solve() will not be
called on the returned object.

class pwkit.lsqmdl.ScaleModel(x, data, invsigma=None)
Solve data = m * x for m.

3.10 Math with uncertain and censored measurements (pwkit.msmt)

pwkit.msmt - Working with uncertain measurements.

Classes:

3.10. Math with uncertain and censored measurements (pwkit.msmt) 33

pwkit, Release 0.6.99

Uval - An empirical uncertain value represented by numerical samples. LimitError - Raised on illegal operations on
upper/lower limits. Lval - Container for either precise values or upper/lower limits. Textual - A measurement recorded
in textual form.

Generic unary functions on measurements:

absolute - abs(x) arccos - As named. arcsin - As named. arctan - As named. cos - As named. errinfo - Get (limtype,
repval, plus_1_sigma, minus_1_sigma) expm1 - exp(x) - 1 exp - As named. fmtinfo - Get (typetag, text, is_imprecise)
for textual round-tripping. isfinite - True if the value is well-defined and finite. liminfo - Get (limtype, repval) limtype
- -1 if the datum is an upper limit; 1 if lower; 0 otherwise. log10 - As named. log1p - log (1+x) log2 - As named.
log - As named. negative - -x reciprocal - 1/x repval - Get a “representative” value if x (in case it is uncertain). sin
- As named. sqrt - As named. square - x**2 tan - As named. unwrap - Get a version of x on which algebra can be
performed.

Generic binary mathematical-ish functions:

add - x + y divide - x / y; floor-integer division should be respected but usually isn’t. multiply - x * y power - x
** y subtract - x - y true_divide - x / y, never with floor-integer division typealign - Return (x*, y*) cast to same
algebra-friendly type: float, Uval, or Lval.

Miscellaneous functions:

is_measurement - Check whether an object is numerical find_gamma_params - Compute reasonable Γ distribu-
tion parameters given mode/stddev. pk_scoreatpercentile - Simplified version of scipy.stats.scoreatpercentile. sam-
ple_double_norm - Sample from a quasi-normal distribution with asymmetric variances. sample_gamma - Sample
from a Γ distribution with 𝛼/𝛽 parametrization.

Variables:

lval_unary_math - Dict of unary math functions operating on Lvals. parsers - Dict of type tag to parsing functions.
scalar_unary_math - Dict of unary math functions operating on scalars. textual_unary_math - Dict of unary math
functions operating on Textuals. UQUANT_UNCERT - Scale of uncertainty assumed for in cases where it’s un-
quantified. uval_default_repval_method - Default method for computing Uval representative values. uval_dtype -
The Numpy dtype of Uval data (often ignored!) uval_nsamples - Number of samples used when constructing Uvals
uval_unary_math - Dict of unary math functions operating on Uvals.

class pwkit.msmt.Lval(kind, value)
A container for either precise values or upper/lower limits. Constructed as Lval (kind, value), where
kind is "exact", "uncertain", "toinf", "tozero", "pastzero", or "undef". Most easily con-
structed via Textual.parse(). Can also be constructed with Lval.from_other().

Supported operations are unicode() str() repr() -(neg) abs() + - * / ** += -= *=
/= **=.

class pwkit.msmt.Textual(tkind, dkind, data)
A measurement recorded in textual form.

Textual.from_exact (text, tkind=’none’) - text is passed to float() Textual.parse (text, tkind=’none’) - text as
described below.

Transformation kinds are ‘none’, ‘log10’, or ‘positive’. Expressions for values take the form ‘1.234’, ‘<2’, ‘>3’,
‘~7’, ‘6to8’, ‘7pm0.1’, or ‘12p1m0.3’.

Methods:

unparse() - Return parsed text (but not tkind!) unwrap() - Express as float/Uval/Lval as appropriate. rep-
val(limitsok=False) - Get single scalar “representative” value. limtype() - -1 if upper limit; +1 if lower; 0
otherwise.

Supported operations: unicode() str() repr() [latexification] -(neg) abs() + - * / **

34 Chapter 3. Scientific Algorithms

pwkit, Release 0.6.99

limtype()
Return -1 if this value is an upper limit, 1 if it is a lower limit, 0 otherwise.

repval(limitsok=False)
Get a best-effort representative value as a float. This can be DANGEROUS because it discards limit
information, which is rarely wise.

class pwkit.msmt.Uval(data)
An empirical uncertain value, represented by samples.

Constructors are:

•Uval.from_other()

•Uval.from_fixed()

•Uval.from_norm()

•Uval.from_unif()

•Uval.from_double_norm()

•Uval.from_gamma()

•Uval.from_pcount()

Key methods are:

•repvals()

•text_pieces()

•format()

•debug_distribution()

Supported operations are: unicode() str() repr() [latexification] + -(sub) * // /
% ** += -= *= //= %= /= **= -(neg) ~ abs()

static from_pcount(nevents)
We assume a Poisson process. nevents is the number of events in some interval. The distribution of values
is the distribution of the Poisson rate parameter given this observed number of events, where the “rate”
is in units of events per interval of the same duration. The max-likelihood value is nevents, but the mean
value is nevents + 1. The gamma distribution is obtained by assuming an improper, uniform prior for the
rate between 0 and infinity.

repvals(method)
Compute representative statistical values for this Uval. method may be either ‘pct’ or ‘gauss’.

Returns (best, plus_one_sigma, minus_one_sigma), where best is the “best” value in some sense, and the
others correspond to values at the ~84 and 16 percentile limits, respectively. Because of the sampled nature
of the Uval system, there is no single method to compute these numbers.

The “pct” method returns the 50th, 15.866th, and 84.134th percentile values.

The “gauss” method computes the mean 𝜇 and standard deviation 𝜎 of the samples and returns [𝜇, 𝜇+𝜎,
𝜇-𝜎].

text_pieces(method, uplaces=2)
Return (main, dhigh, dlow, sharedexponent), all as strings. The delta terms do not have sign indicators.
Any item except the first may be None.

method is passed to Uval.repvals() to compute representative statistical limits.

3.10. Math with uncertain and censored measurements (pwkit.msmt) 35

pwkit, Release 0.6.99

pwkit.msmt.errinfo(msmt)
Return (limtype, repval, errval1, errval2). Like m_liminfo, but also provides error bar information for values
that have it.

pwkit.msmt.fmtinfo(value)
Returns (typetag, text, is_imprecise). Unlike other functions that operate on measurements, this also operates
on bools, ints, and strings.

pwkit.msmt.liminfo(msmt)
Return (limtype, repval). limtype is -1 for upper limits, 1 for lower limits, and 0 otherwise; repval is a best-effort
representative scalar value for this measurement.

pwkit.msmt.limtype(msmt)
Return -1 if this value is some kind of upper limit, 1 if this value is some kind of lower limit, 0 otherwise.

pwkit.msmt.repval(msmt, limitsok=False)
Get a best-effort representative value as a float. This is DANGEROUS because it discards limit information,
which is rarely wise. m_liminfo() or m_unwrap() are recommended instead.

pwkit.msmt.unwrap(msmt)
Convert the value into the most basic representation that we can do math on: float if possible, then Uval, then
Lval.

pwkit.msmt.find_gamma_params(mode, std)
Given a modal value and a standard deviation, compute corresponding parameters for the gamma distribution.

Intended to be used to replace normal distributions when the value must be positive and the uncertainty is
comparable to the best value. Conversion equations determined from the relations given in the sample_gamma()
docs.

pwkit.msmt.sample_double_norm(mean, std_upper, std_lower, size)
Note that this function requires Scipy.

pwkit.msmt.sample_gamma(alpha, beta, size)
This is mostly about recording the conversion between Numpy/Scipy conventions and Wikipedia conventions.
Some equations:

mean = alpha / beta variance = alpha / beta**2 mode = (alpha - 1) / beta [if alpha > 1; otherwise undefined]
skewness = 2 / sqrt (alpha)

pwkit.msmt.UQUANT_UNCERT = 0.2
Some values are known to be uncertain, but their uncertainties have not been quantified. This is lame but it
happens. In this case, assume a 20% uncertainty.

We could infer uncertainties from the number of written digits: i.e., assuming “1.2” is uncertain by 0.05 or so,
while “1.2000” is uncertain by 0.00005 or so. But there are many cases in astronomy where people just list
values that are 20% uncertain and give them to multiple decimal places. I’d rather be conservative with these
values than overly optimistic.

Code to do the appropriate parsing is in the Python uncertainties package, in its
__init__.py:parse_error_in_parentheses().

pwkit.msmt.uval_dtype
alias of float64

3.11 Period-finding with Phase Dispersion Minimization (pwkit.pdm)

pwkit.pdm - period-finding with phase dispersion minimization

36 Chapter 3. Scientific Algorithms

pwkit, Release 0.6.99

As defined in Stellingwerf (1978ApJ...224..953S). See the update in Schwarzenberg-Czerny (1997ApJ...489..941S),
however, which corrects the significance test formally; Linnell Nemec & Nemec (1985AJ.....90.2317L) provide a
Monte Carlo approach. Also, Stellingwerf has developed “PDM2” which attempts to improve a few aspects; see

• Stellingwerf’s page

• The Wikipedia article

class pwkit.pdm.PDMResult(thetas, imin, pmin, mc_tmins, mc_pvalue, mc_pmins, mc_puncert)

imin
Alias for field number 1

mc_pmins
Alias for field number 5

mc_puncert
Alias for field number 6

mc_pvalue
Alias for field number 4

mc_tmins
Alias for field number 3

pmin
Alias for field number 2

thetas
Alias for field number 0

pwkit.pdm.pdm(t, x, u, periods, nbin, nshift=8, nsmc=256, numc=256, weights=False, parallel=True)
Perform phase dispersion minimization.

t [1D array] time coordinate

x [1D array, same size as t] observed value

u [1D array, same size as t] uncertainty on observed value; same units as x

periods [1D array] set of candidate periods to sample; same units as t

nbin [int] number of phase bins to construct

nshift [int=8] number of shifted binnings to sample to combact statistical flukes

nsmc [int=256] number of Monte Carlo shufflings to compute, to evaluate the significance of the minimal theta
value.

numc [int=256] number of Monte Carlo added-noise datasets to compute, to evaluate the uncertainty in the
location of the minimal theta value.

weights [bool=False] if True, ‘u’ is actually weights, not uncertainties. Usually weights = u**-2.

parallel [default True] Controls parallelization of the algorithm. Default uses all available cores. See
pwkit.parallel.make_parallel_helper.

Returns named tuple of:

thetas [1D array] values of theta statistic, same size as periods

imin index of smallest (best) value in thetas

pmin the period value with the smallest (best) theta

3.11. Period-finding with Phase Dispersion Minimization (pwkit.pdm) 37

http://www.stellingwerf.com/rfs-bin/index.cgi?action=PageView&id=29
http://en.wikipedia.org/wiki/Phase_dispersion_minimization

pwkit, Release 0.6.99

mc_tmins 1D array of size nsmc with Monte Carlo samplings of minimal theta values for shufflings of the data;
assesses significance of the peak

mc_pvalue probability (between 0 and 1) of obtaining the best theta value in a randomly-shuffled dataset

mc_pmins 1D array of size numc with Monte Carlo samplings of best period values for noise-added data;
assesses uncertainty of pmin

mc_puncert standard deviation of mc_pmins; approximate uncertainty on pmin.

We don’t do anything clever, so runtime scales at least as t.size * periods.size * nbin *
nshift * (nsmc + numc + 1).

3.12 Loading the outputs of PHOENIX atmospheric models
(pwkit.phoenix)

pwkit.phoenix - Working with Phoenix atmospheric models.

Functions:

• load_spectrum - Load a model spectrum into a Pandas DataFrame.

Requires Pandas.

Individual data files for the BT-Settl models are about 120 MB, and there are a million variations, so we do not
consider bundling them with pwkit. Therefore, we can safely expect that the model will be accessible as a path on the
filesystem.

Current BT-Settl models may be downloaded from a SPECTRA directory within the BT-Settl download site (see the
README). E.g.:

http://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011bc/SPECTRA/

File names are generally:

lte{Teff/100}-{Logg}{[M/H]}a[alpha/H].GRIDNAME.spec.7.[gz|bz2|xz]

The first three columns are wavelength in Å, log10(F_𝜆), and log10(B_𝜆), where the latter is the blackbody flux
for the given Teff. The fluxes can nominally be converted into absolute units with an offset of 8 in log space, but
I doubt that can be trusted much. Subsequent columns are related to various spectral lines. See http://phoenix.ens-
lyon.fr/Grids/FORMAT .

The files do not come sorted!

pwkit.phoenix.load_spectrum(path, smoothing=181)
Load a Phoenix model atmosphere spectrum.

path [string] The file path to load.

smoothing [integer] Smoothing to apply. If None, do not smooth. If an integer, smooth with a Hamming
window. Otherwise, the variable is assumed to be a different smoothing window, and the data will be
convolved with it.

Returns a Pandas DataFrame containing the columns:

wlen Sample wavelength in Angstrom.

flam Flux density in erg/cm²/s/Å. See pwkit.synphot for related tools.

Loading takes about 5 seconds on my current laptop. Un-smoothed spectra have about 630,000 samples.

38 Chapter 3. Scientific Algorithms

http://phoenix.ens-lyon.fr/Grids/BT-Settl/
http://phoenix.ens-lyon.fr/Grids/FORMAT
http://phoenix.ens-lyon.fr/Grids/FORMAT

pwkit, Release 0.6.99

3.13 Flux density models of radio calibrators
(pwkit.radio_cal_models)

pwkit.radio_cal_models - models of radio calibrator flux densities.

From the command line:

python -m pwkit.radio_cal_models [-f] <source> <freq[mhz]>
python -m pwkit.radio_cal_models [-f] CasA <freq[mhz]> <year>

Print the flux density of the specified calibrator at the specified frequency, in Janskys.

Arguments:

<source> the source name (e.g., 3c348)

<freq> the observing frequency in MHz (e.g., 1420)

<year> is the decimal year of the observation (e.g., 2007.8). Only needed if <source> is CasA.

-f activates “flux” mode, where a three-item string is printed that can be passed to MIRIAD tasks that accept a model
flux and spectral index argument.

pwkit.radio_cal_models.cas_a(freq_mhz, year)
Return the flux of Cas A given a frequency and the year of observation. Based on the formula given in Baars et
al., 1977.

Parameters:

freq - Observation frequency in MHz. year - Year of observation. May be floating-point.

Returns: s, flux in Jy.

pwkit.radio_cal_models.init_cas_a(year)
Insert an entry for Cas A into the table of models. Need to specify the year of the observations to account for
the time variation of Cas A’s emission.

3.14 Synthetic photometry (pwkit.synphot)

pwkit.synphot - Synthetic photometry and database of instrumental bandpasses.

The basic structure is that we have a registry of bandpass info. You can use it to create Bandpass objects that can
perform various calculations, especially the computation of synthetic photometry given a spectral model. Some key
attributes of each bandpass are pre-computed so that certain operations can be done without needing to load the actual
bandpass profile (though so far none of these profiles are very large at all).

Classes:

AlreadyDefinedError - Raised when re-registering bandpass info. Bandpass - Performs standard computations given a
bandpass profile. NotDefinedError - Raised when needed bandpass info is unavailable. Registry - A registry of known
bandpass profiles.

Functions:

get_std_registry - Retrieve a Registry pre-filled with builtin telescope info. (unlisted) - Various internal utilities may
be useful for reference.

Variables:

builtin_registrars - Hashtable of functions to register the builtin telescopes.

3.13. Flux density models of radio calibrators (pwkit.radio_cal_models) 39

pwkit, Release 0.6.99

3.14.1 Example

from pwkit import synphot as ps, cgs as pc, msmt as pm reg = ps.get_std_registry () print (reg.telescopes ()) # list
known telescopes print (reg.bands (‘2MASS’)) # list known 2MASS bands bp = reg.get (‘2MASS’, ‘Ks’) mag = 12.83
mjy = pm.repval (bp.mag_to_fnu (mag) * pc.jypercgs * 1e3) print (‘%.2f mag is %.2f mjy in 2MASS/Ks’ % (mag,
mjy))

3.14.2 Conventions

It is very important to maintain consistent conventions throughout.

Wavelengths are measured in angstroms. Flux densities are either per-wavelength (f_𝜆, “flam”) or per-frequency
(f_𝜈, “fnu”). These are measured in units of erg/s/cm²/Å and erg/s/cm²/Hz, respectively. Janskys can be converted
to f_𝜈 by multiplying by cgs.cgsperjy. f_𝜈’s and f_𝜆’s can be interconverted for a given filter if you know its “pivot
wavelength”. Some of the routines below show how to calculate this and do the conversion. “AB magnitudes” can be
directly converted to Janskys and, thus, f_𝜈’s.

Filter bandpasses can be expressed in two conventions: either “equal-energy” (EE) or “quantum-efficiency” (QE). The
former gives the response per unit energy across the band, while the latter gives the response per photon. The EE
convention can be integrated directly against a model spectrum, so we store all bandpasses internally in this conven-
tion. CCDs are photon-counting devices and so their response curves are generally expressed in the QE convention.
Interconversion is easy: EE = QE * 𝜆.

We don’t expect any particular normalization of bandpass response curves.

The “width” of a bandpass is not a well-defined quantity, but is often needed for display purposes or approximate
calculations. We use the locations of the half-maximum points (in the EE convention) to define the band edges.

This module requires Scipy and Pandas. It doesn’t reeeeallllly need Pandas but it’s convenient.

3.14.3 References

Casagrande & VandenBerg (2014; arxiv:1407.6095) has a lot of good stuff; see also references therein.

References for specific bandpasses are given in their implementation docstrings.

class pwkit.synphot.Bandpass
Computations regarding a particular filter bandpass.

Functions:

calc_halfmax_points - Calculate the wavelengths of the filter half-maximum values. calc_pivot_wavelength -
Calculate the filter’s pivot wavelength. halfmax_points - Get the filter half-maximum points (calculated if not
cached). jy_to_flam - Convert Jy in this filter to a f_𝜆. mag_to_flam - Convert a magnitude in this filter to a f_𝜆.
mag_to_fnu - Convert a magnitude in this filter to a f_𝜈. pivot_wavelength - Get the filter’s pivot wavelength
(calculated if not cached). synphot - Compute synthetic photometry given a model spectrum.

Attributes:

band - The name of this bandpass’ associated band. native_flux_kind - Which kind of flux this bandpass is
calibrated to: ‘flam’, ‘fnu’, or ‘none’. registry - This object’s parent Registry instance. telescope - The name of
this bandpass’ associated telescope.

The underlying bandpass shape is assumed to be sampled at discrete points. It is stored in _data and loaded
on-demand. The object is a Pandas DataFrame containing at least the columns ‘wlen’ and ‘resp’. The former
holds the wavelengths of the sample points, in Ångström and in ascending order. The latter gives the response
curve in the EE convention. No particular normalization is assumed. Other columns may be present but are not
used generically.

40 Chapter 3. Scientific Algorithms

pwkit, Release 0.6.99

calc_pivot_wavelength()
Compute and return the bandpass’ pivot wavelength.

This value is computed directly from the bandpass data, not looked up in the Registry. Most of the values
in the Registry were in fact derived from this function originally.

halfmax_points()
Get the bandpass’ half-maximum wavelengths. These can be used to compute a representative bandwidth,
or for display purposes.

Unlike calc_halfmax_points(), this function will use a cached value if available.

jy_to_flam(jy)
Convert a f_𝜈 flux density measured in Janskys to a f_𝜆 flux density.

This conversion is bandpass-dependent because it depends on the pivot wavelength of the bandpass used
to measure the flux density.

mag_to_flam(mag)
Convert a magnitude in this band to a f_𝜆 flux density.

It is assumed that the magnitude has been computed in the appropriate photometric system. The definition
of “appropriate” will vary from case to case.

mag_to_fnu(mag)
Convert a magnitude in this band to a f_𝜈 flux density.

It is assumed that the magnitude has been computed in the appropriate photometric system. The definition
of “appropriate” will vary from case to case.

pivot_wavelength()
Get the bandpass’ pivot wavelength.

Unlike calc_pivot_wavelength(), this function will use a cached value if available.

synphot(wlen, flam)
wlen and flam give a tabulated model spectrum in wavelength and f_𝜆 units. We interpolate linearly over
both the model and the bandpass since they’re both discretely sampled.

Note that quadratic interpolation is both much slower and can blow up fatally in some cases. The latter
issue might have to do with really large X values that aren’t zero-centered, maybe?

I used to use the quadrature integrator, but Romberg doesn’t issue complaints the way quadrature did. I
should probably acquire some idea about what’s going on under the hood.

class pwkit.synphot.Registry
A registry of known bandpass properties.

Methods:

bands - Return a list of bands associated with a telescope. get - Get a Bandpass object for a known telescope and
filter. register_bpass - Register a Bandpass class. register_halfmaxes - Register precomputed half-max points.
register_pivot_wavelength - Register precomputed pivot wavelengths. telescopes - Return a list of telescopes
known to this registry.

bands(telescope)
Return a list of bands associated with the specified telescope.

telescopes()
Return a list of telescopes known to this registry.

pwkit.synphot.get_std_registry()
Get a Registry object pre-filled with information for standard telescopes.

3.14. Synthetic photometry (pwkit.synphot) 41

pwkit, Release 0.6.99

3.15 Scaling relations for physical properties of ultra-cool dwarfs
(pwkit.ucd_physics)

pwkit.ucd_physics - Physical calculations for (ultra)cool dwarfs.

These functions generally implement various nontrivial physical relations published in the literature. See docstrings
for references.

Functions:

bcj_from_spt J-band bolometric correction from SpT.

bck_from_spt K-band bolometric correction from SpT.

load_bcah98_mass_radius Load Baraffe+ 1998 mass/radius data.

mass_from_j Mass from absolute J magnitude.

mk_radius_from_mass_bcah98 Radius from mass, using BCAH98 models.

tauc_from_mass Convective turnover time from mass.

pwkit.ucd_physics.bcj_from_spt(spt)
Calculate a bolometric correction constant for a J band magnitude based on a spectral type, using the fit of
Wilking+ (1999AJ....117..469W).

spt - Numerical spectral type. M0=0, M9=9, L0=10, ...

Returns: the correction bcj such that m_bol = j_abs + bcj, or NaN if spt is out of range.

Valid values of spt are between 0 and 10.

pwkit.ucd_physics.bck_from_spt(spt)
Calculate a bolometric correction constant for a J band magnitude based on a spectral type, using the fits of
Wilking+ (1999AJ....117..469W), Dahn+ (2002AJ....124.1170D), and Nakajima+ (2004ApJ...607..499N).

spt - Numerical spectral type. M0=0, M9=9, L0=10, ...

Returns: the correction bck such that m_bol = k_abs + bck, or NaN if spt is out of range.

Valid values of spt are between 2 and 30.

pwkit.ucd_physics.load_bcah98_mass_radius(tablelines, metallicity=0, heliumfrac=0.275,
age_gyr=5.0, age_tol=0.05)

Load mass and radius from the main data table for the famous models of Baraffe+ (1998A&A...337..403B).

tablelines An iterable yielding lines from the table data file. I’ve named the file ‘1998A&A...337..403B_tbl1-
3.dat’ in some repositories (it’s about 150K, not too bad).

metallicity The metallicity of the model to select.

heliumfrac The helium fraction of the model to select.

age_gyr The age of the model to select, in Gyr.

age_tol The tolerance on the matched age, in Gyr.

Returns: (mass, radius), where both are Numpy arrays.

The ages in the data table vary slightly at fixed metallicity and helium fraction. Therefore, there needs to be a
tolerance parameter for matching the age.

pwkit.ucd_physics.mass_from_j(j_abs)
Estimate mass in cgs from absolute J magnitude, using the relationship of Delfosse+ (2000A&A...364..217D).

j_abs - The absolute J magnitude.

42 Chapter 3. Scientific Algorithms

pwkit, Release 0.6.99

Returns: the estimated mass in grams.

If j_abs > 11, a fixed result of 0.1 Msun is returned. Values of j_abs < 5.5 are illegal and get NaN. There is a
discontinuity in the relation at j_abs = 11, which yields 0.0824 Msun.

pwkit.ucd_physics.mk_radius_from_mass_bcah98(*args, **kwargs)
Create a function that maps (sub)stellar mass to radius, based on the famous models of Baraffe+
(1998A&A...337..403B).

tablelines An iterable yielding lines from the table data file. I’ve named the file ‘1998A&A...337..403B_tbl1-
3.dat’ in some repositories (it’s about 150K, not too bad).

metallicity The metallicity of the model to select.

heliumfrac The helium fraction of the model to select.

age_gyr The age of the model to select, in Gyr.

age_tol The tolerance on the matched age, in Gyr.

Returns: a function mtor(mass_g), return a radius in cm as a function of a mass in grams. The mass must be
between 0.05 and 0.7 Msun.

The ages in the data table vary slightly at fixed metallicity and helium fraction. Therefore, there needs to be a
tolerance parameter for matching the age.

This function requires Scipy.

pwkit.ucd_physics.tauc_from_mass(mass_g)
Estimate the convective turnover time from mass, using the method described in Cook+ (2014ApJ...785...10C).

mass_g - UCD mass in grams.

Returns: the convective turnover timescale in seconds.

Masses larger than 1.3 Msun are out of range and yield NaN. If the mass is <0.1 Msun, the turnover time is fixed
at 70 days.

The Cook method was inspired by the description in McLean+ (2012ApJ...746...23M). It is a hybrid of
the method described in Reiners & Basri (2010ApJ...710..924R) and the data shown in Kiraga & Stepien
(2007AcA....57..149K). However, this version imposes the 70-day cutoff in terms of mass, not spectral type,
so that it is entirely defined in terms of a single quantity.

There are discontinuities between the different break points! Any future use should tweak the coefficients to
make everything smooth.

3.15. Scaling relations for physical properties of ultra-cool dwarfs (pwkit.ucd_physics) 43

pwkit, Release 0.6.99

44 Chapter 3. Scientific Algorithms

CHAPTER 4

Command-line tools

This documentation has a lot of stubs.

4.1 Quick astronomical calculations (astrotool)

pwkit.cli.astrotool - the ‘astrotool’ program.

4.2 Quick operations on astronomical images (pwkit.cli.imtool)

pwkit.cli.imtool - the ‘imtool’ program.

4.3 Single-command compilation of LaTeX documents
(latexdriver)

pwkit.cli.latexdriver - the ‘latexdriver’ program.

This used to be a nice little shell script, but for portability it’s better to do this in Python.

4.4 Wrap the output of a sub-program with extra information
(wrapout)

pwkit.cli.wrapout - the ‘wrapout’ program.

45

pwkit, Release 0.6.99

46 Chapter 4. Command-line tools

CHAPTER 5

Data Visualization

This documentation has a lot of stubs.

5.1 Mapping arbitrary data to color scales (pwkit.colormaps)

pwkit.colormaps – tools to conver arrays of real-valued data to other formats (usually, RGB24) for visualization.

TODO: “heated body” map.

The main interface is the factory_map dictionary from colormap names to factory functions. base_factory_names lists
the names of a set of color maps. Additional ones are available with the suffixes “_reverse” and “_sqrt” that apply the
relevant transforms.

The factory functions return another function, the “mapper”. Each mapper takes a single argument, an array of values
between 0 and 1, and returns the mapped colors. If the input array has shape S, the returned value has a shape (S + (3,
)), with mapped[...,0] being the R values, between 0 and 1, etc.

Example:

data = np.array ([<things between 0 and 1>]) mapper = factory_map[’cubehelix_blue’]() rgb = mapper
(data) green_values = rgb[:,1] last_rgb = rgb[-1]

The basic colormap names are:

moreland_bluered Divergent colormap from intense blue (at 0) to intense red (at 1), passing through
white

cubehelix_dagreen From black to white through rainbow colors

cubehelix_blue From black to white, with blue hues

pkgw From black to red, through purplish

black_to_white, black_to_red, black_to_green, black_to_blue From black to the named colors.

white_to_black, white_to_red, white_to_green, white_to_blue From white to the named colors.

The mappers can also take keyword arguments, including at least “transform”, which specifies simple transforms that
can be applied to the colormaps. These are (in terms of symbolic constants and literal string values):

‘none’ - No transform (the default) ‘reverse’ - x -> 1 - x (reverses the colormap) ‘sqrt’ - x -> sqrt (x)

For each transform other than “none”, factory_map contains an entry with an underscore and the transform name
applied (e.g., “pkgw_reverse”) that has that transform applied.

The initial inspiration was an implementation of the ideas in “Diverging Color Maps for Scientific Visualization
(Expanded)”, Kenneth Moreland,

47

pwkit, Release 0.6.99

http://www.cs.unm.edu/~kmorel/documents/ColorMaps/index.html

I’ve realized that I’m not too fond of the white mid-values in these color maps in many cases. So I also added an
implementation of the “cube helix” color map, described by D. A. Green in

“A colour scheme for the display of astronomical intensity images” http://adsabs.harvard.edu/abs/2011BASI...39..289G
(D. A. Green, 2011 Bull. Ast. Soc. of India, 39 289)

I made up the pkgw map myself (who’d have guessed?).

5.2 Tracing contours (pwkit.contours)

pwkit.contours - Tracing contours in functions and data.

Uses my own homebrew algorithm. So far, it’s only tested on extremely well-behaved functions, so probably doesn’t
cope well with poorly-behaved ones.

pwkit.contours.analytic_2d(f, df, x0, y0, maxiters=5000, defeta=0.05, netastep=12, vtol1=0.001,
vtol2=1e-08, maxnewt=20, dorder=7, goright=False)

Sample a contour in a 2D analytic function. Arguments:

f A function, mapping (x, y) -> z.

df The partial derivative: df (x, y) -> [dz/dx, dz/dy]. If None, the derivative of f is approximated numerically
with scipy.derivative.

x0 Initial x value. Should be of “typical” size for the problem; avoid 0.

y0 Initial y value. Should be of “typical” size for the problem; avoid 0.

Optional arguments:

maxiters Maximum number of points to create. Default 5000.

defeta Initially offset by distances of defeta*[df/dx, df/dy] Default 0.05.

netastep Number of steps between defeta and the machine resolution in which we test eta values for goodness.
(OMG FIXME doc). Default 12.

vtol1 Tolerance for constancy in the value of the function in the initial offset step. The value is only allowed to
vary by f(x0,y0) * vtol1. Default 1e-3.

vtol2 Tolerance for constancy in the value of the function in the along the contour. The value is only allowed
to vary by f(x0,y0) * vtol2. Default 1e-8.

maxnewt Maximum number of Newton’s method steps to take when attempting to hone in on the desired
function value. Default 20.

dorder Number of function evaluations to perform when evaluating the derivative of f numerically. Must be an
odd integer greater than 1. Default 7.

goright If True, trace the contour rightward (as looking uphill), rather than leftward (the default).

5.3 Utilities for data visualization (pwkit.data_gui_helpers)

pwkit.data_gui_helpers - helpers for GUIs looking at data arrays

Classes:

Clipper - Map data into [0,1] ColorMapper - Map data onto RGB colors using pwkit.colormaps Stretcher - Map data
within [0,1] using a stretch like sqrt, etc.

48 Chapter 5. Data Visualization

http://www.cs.unm.edu/~kmorel/documents/ColorMaps/index.html
http://adsabs.harvard.edu/abs/2011BASI...39..289G

pwkit, Release 0.6.99

Functions:

data_to_argb32 - Turn arbitrary data values into ARGB32 colors. data_to_imagesurface - Turn arbitrary data values
into a Cairo ImageSurface.

pwkit.data_gui_helpers.data_to_argb32(data, cmin=None, cmax=None, stretch=u’linear’,
cmap=u’black_to_blue’)

Turn arbitrary data values into ARGB32 colors.

There are three steps to this process: clipping the data values to a maximum and minimum; stretching the
spacing between those values; and converting their amplitudes into colors with some kind of color map.

data - Input data; can (and should) be a MaskedArray if some values are invalid.

cmin - The data clip minimum; all values <= cmin are treated identically. If None (the default), data.min ()
is used.

cmax - The data clip maximum; all values >= cmax are treated identically. If None (the default), data.max
() is used.

stretch - The stretch function name; ‘linear’, ‘sqrt’, or ‘square’; see the Stretcher class.

cmap - The color map name; defaults to ‘black_to_blue’. See the pwkit.colormaps module for more
choices.

Returns a Numpy array of the same shape as data with dtype np.uint32, which represents the ARGB32 colorized
version of the data. If your colormap is restricted to a single R or G or B channel, you can make color images
by bitwise-or’ing together different such arrays.

class pwkit.data_gui_helpers.Stretcher(mode)
Assumes that its inputs are in [0, 1]. Maps its outputs to the same range.

5.4 Easy visualization of matrices with GTK+ version 2
(pwkit.ndshow_gtk2)

pwkit.ndshow_gtk2 - visualize data arrays with the Gtk+2 toolkit.

Functions:

view - Show a GUI visualizing a 2D array. cycle - Show a GUI cycling through planes of a 3D array.

Classes:

Viewport - A GtkDrawingArea that renders a portion of an array. Viewer - A GUI window for visualizing a 2D array.
Cycler - A GUI window for cycling through planes of a 3D array.

UI features of the viewport:

• click-drag to pan

• scrollwheel to zoom in/out (Ctrl to do so more aggressively)

• (Shift to change color scale adjustment sensitivity)

• double-click to recenter

• shift-click-drag to adjust color scale (prototype)

Added by the toplevel window viewer:

• Ctrl-A to autoscale data to fit window

• Ctrl-E to center the data in the window

5.4. Easy visualization of matrices with GTK+ version 2 (pwkit.ndshow_gtk2) 49

pwkit, Release 0.6.99

• Ctrl-F to fullscreen the window

• Escape to un-fullscreen it

• Ctrl-W to close the window

• Ctrl-1 to set scale to unity

• Ctrl-S to save the data to “data.png” under the current rendering options (but not zoomed to the current view of
the data).

Added by cycler:

• Ctrl-K to move to next plane

• Ctrl-J to move to previous plane

• Ctrl-C to toggle automatic cycling

5.5 Easy visualization of matrices with GTK+ version 3
(pwkit.ndshow_gtk3)

pwkit.ndshow_gtk3 - visualize data arrays with the Gtk+3 toolkit.

Functions:

view - Show a GUI visualizing a 2D array. cycle - Show a GUI cycling through planes of a 3D array.

Classes:

Viewport - A GtkDrawingArea that renders a portion of an array. Viewer - A GUI window for visualizing a 2D array.
Cycler - A GUI window for cycling through planes of a 3D array.

UI features of the viewport:

• click-drag to pan

• scrollwheel to zoom in/out (Ctrl to do so more aggressively) (Shift to change color scale adjustment sensitivity)

• double-click to recenter

• shift-click-drag to adjust color scale (prototype)

Added by the toplevel window viewer:

• Ctrl-A to autoscale data to fit window

• Ctrl-E to center the data in the window

• Ctrl-F to fullscreen the window

• Escape to un-fullscreen it

• Ctrl-W to close the window

• Ctrl-1 to set scale to unity

• Ctrl-S to save the data to “data.png” under the current rendering options (but not zoomed to the current view of
the data).

Added by cycler:

• Ctrl-K to move to next plane

• Ctrl-J to move to previous plane

50 Chapter 5. Data Visualization

pwkit, Release 0.6.99

• Ctrl-C to toggle automatic cycling

5.5. Easy visualization of matrices with GTK+ version 3 (pwkit.ndshow_gtk3) 51

pwkit, Release 0.6.99

52 Chapter 5. Data Visualization

CHAPTER 6

Data input and output

This documentation has a lot of stubs.

6.1 Streaming output from other programs (pwkit.slurp)

The pwkit.slurp module makes it convenient to read output generated by other programs. This is accomplished
with a context-manager class known as Slurper, which is built on top of the standard subprocess.Popen
module.

The chief advantage of Slurper above subprocess.Popen is that it provides convenient, streaming access to
subprogram output, maintaining the distinction between “stdout” (standard output, written to file descriptor #1) and
“stderr” (standard error, written to file descriptor #2). It can also forward signals to the child program.

Standard usage might look like:

from pwkit import slurp
argv = ['cat', '/etc/passwd']

with slurp.Slurper (argv, linebreak=True) as slurper:
for etype, data in slurper:

if etype == 'stdout':
print ('got line:', data)

print ('exit code was:', slurper.proc.returncode)

Slurper is a context manager to ensure that the child process is always cleaned up. Within the context manager
body, you should iterate over the Slurper instance to get a series of “event” 2-tuples consisting of a Unicode string
giving the event type, and the event data. Most, but not all, events have to do with receiving data over the stdout or
stderr pipes. The events are:

Event type Event data Description
"stdout" The output Data were received from the subprogram’s standard output.
"stderr" The output Data were received from the subprogram’s standard error.
"forwarded-signal" The signal number This process received a signal and forwarded it to the child.
"timeout" None No data were received from the child within a fixed timeout.

The data provided on the "stdout" and "stderr" events follow the usual Python patterns for EOF. Namely, when
either of those pipes is closed by the subprocess, a final event is sent in which the data payload has zero length. (It
may be either a bytes object or a Unicode string depending on whether decoding is enabled; see below.)

53

https://docs.python.org/library/subprocess.html#subprocess.Popen
https://docs.python.org/library/subprocess.html#subprocess.Popen

pwkit, Release 0.6.99

Warning: It is important to realize that programs that use the standard C I/O routines, such as Python programs,
buffer their output by default. The pwkit.slurp module may appear to be having problems while really the
child program is batching up its output and writing it all at once. This can be surprising because the default
behavior is line-buffered when stdout is connected to a TTY (as when you run programs in your terminal), but
buffered in large blocks when connected to a pipe (as when using this module). On systems built on glibc, you
can control this by using the stdbuf program to launch your subprogram with different buffering options. To
run the command foo bar with both stdout and stderr buffered at the line level, run stdbuf -oL -eL foo
bar. To disable buffering on both streams, run stdbuf -o0 -e0 foo bar.

class pwkit.slurp.Slurper(argv=None, env=None, cwd=None, propagate_signals=True, timeout=10,
linebreak=False, encoding=None, stdin=slurp.Redirection.DevNull,
stdout=slurp.Redirection.Pipe, stderr=slurp.Redirection.Pipe, exe-
cutable=None)

Construct a context manager used to read output from a subprogram. argv is used to launch the subprogram
using subprocess.Popen with the shell keyword set to False. env, cwd, executable, stdin, stdout, and stderr
are forwarded to the subprocess.Popen constructor as well.

Regarding the redirection parameters stdin, stdout, and stderr, the constants in the Redirection object
gives more user-friendly names to the analogues provided by the subprocess module, with the addition
of a Redirection.DevNull option emulating behavior added in Python 3. Otherwise these values are
passed to subprocess.Popen verbatim, so you can use anyting that subprocess.Popen would accept.
Keep in mind that you can only fetch the subprogram’s output if one or both of the output paramers are set to
Redirection.Pipe!

If propagate_signals is true, signals received by the parent process will be forwarded to the child process. This
can be valuable to obtain correct behavior on SIGINT, for instance. Forwarded signals are SIGHUP, SIGINT,
SIGQUIT, SIGTERM, SIGUSR1, and SIGUSR2. This is done by overwriting the calling process’ Python signal
handlers; the original handlers are restored upon exit from the with-statement block.

If linebreak is true, output from the child process will be gathered into whole lines (split by "\n") before being
sent to the caller. The newline characters will be discarded, making it impossible to tell whether the final line of
output ended with a newline or not.

If encoding is not None, a decoder will be created with codecs.getincrementaldecoder() and the
subprocess output will be converted from bytes to Unicode before being returned to the calling process.

timeout sets the timeout for the internal select.select() call used to check for output from the subpro-
gram. It is measured in seconds.

Slurper instances have attributes argv , env , cwd, executable, propagate_signals, :timeout,
linebreak, attr:encoding, stdin, :stdout, and stderr recording the construction parameters.

pwkit.slurp.Redirection
An enum-like object defining ways to redirect the I/O streams of the subprogram. These values are identical to
those used in subprocess but with nicer names.

Constant Meaning
Redirection.Pipe Pipe output to the calling program.
Redirection.Stdout Only valid for stderr; merge it with stdout
Redirection.DevNull Direct input from /dev/null, or output thereto.

The whole raison d’être of pwkit.slurp is to make it easy to communicate output between programs, so you
probably will probably want to use Redirection.Pipe for stdout and stderr most of the time.

54 Chapter 6. Data input and output

https://docs.python.org/library/subprocess.html#subprocess.Popen
https://docs.python.org/library/subprocess.html#subprocess.Popen
https://docs.python.org/library/subprocess.html#module-subprocess
https://docs.python.org/library/subprocess.html#subprocess.Popen
https://docs.python.org/library/subprocess.html#subprocess.Popen
https://docs.python.org/library/codecs.html#codecs.getincrementaldecoder
https://docs.python.org/library/select.html#select.select
https://docs.python.org/library/subprocess.html#module-subprocess

pwkit, Release 0.6.99

6.1.1 Slurper reference

Slurper.proc
The subprocess.Popen instance of the child program. After the program has exited, you can access its exit
code as Slurper.proc.returncode.

Slurper.argv
The argv of the program to be launched.

Slurper.env
Environment dictionary for the program to be launched.

Slurper.cwd
The working directory for the program to be launched.

Slurper.executable
The name of the executable to launch (argv[0] is allowed to differ from this).

Slurper.propagate_signals
Whether to forward the subprogram any signals that are received by the calling process.

Slurper.timeout
The timeout (in seconds) for waiting for output from the child program. If nothing is received, a "timeout"
event is generated.

Slurper.linebreak
Whether to gather the subprogram output into textual lines.

Slurper.encoding
The encoding to be used to decode the subprogram output from bytes to Unicode, or None if no such decoding
is to be done.

Slurper.stdin
How to redirect the standard input of the subprogram, if at all.

Slurper.stdout
How to redirect the standard output of the subprogram, if at all. If not Pipe, no "stdout" events will be
received.

Slurper.stderr
How to redirect the standard error of the subprogram, if at all. If not Pipe, no "stderr" events will be
received. If Stdout, events that would have had a type of "stderr" will have a type of "stdout" instead.

6.2 A simple “ini” file format (pwkit.inifile)

A simple parser for ini-style files that’s better than Python’s ConfigParser/configparser.

Functions:

read Generate a stream of pwkit.Holder instances from an ini-format file.

mutate Rewrite an ini file chunk by chunk.

write Write a stream of pwkit.Holder instances to an ini-format file.

mutate_stream Lower-level version; only operates on streams, not path names.

read_stream Lower-level version; only operates on streams, not path names.

write_stream Lower-level version; only operates on streams, not path names.

mutate_in_place Rewrite an ini file specififed by its path name, in place.

6.2. A simple “ini” file format (pwkit.inifile) 55

https://docs.python.org/library/subprocess.html#subprocess.Popen

pwkit, Release 0.6.99

pwkit.inifile.mutate_stream(instream, outstream)
Python 3 compat note: we’re assuming stream gives bytes not unicode.

pwkit.inifile.read_stream(stream)
Python 3 compat note: we’re assuming stream gives bytes not unicode.

pwkit.inifile.write_stream(stream, holders, defaultsection=None)
Very simple writing in ini format. The simple stringification of each value in each Holder is printed, and no
escaping is performed. (This is most relevant for multiline values or ones containing pound signs.) None values
are skipped.

Arguments:

stream A text stream to write to.

holders An iterable of objects to write. Their fields will be written as sections.

defaultsection=None Section name to use if a holder doesn’t contain a section field.

pwkit.inifile.write(stream_or_path, holders, **kwargs)
Very simple writing in ini format. The simple stringification of each value in each Holder is printed, and no
escaping is performed. (This is most relevant for multiline values or ones containing pound signs.) None values
are skipped.

Arguments:

stream A text stream to write to.

holders An iterable of objects to write. Their fields will be written as sections.

defaultsection=None Section name to use if a holder doesn’t contain a section field.

6.3 Outputting data in LaTeX format (pwkit.latex)

pwkit.latex - various helpers for the LaTeX typesetting system.

6.3.1 Classes

Referencer Accumulate a numbered list of bibtex references, then output them.

TableBuilder Create awesome deluxetables programmatically.

6.3.2 Functions

latexify_l3col Format value in LaTeX, suitable for tables of limit values.

latexify_n2col Format a number in LaTeX in 2-column decimal-aligned formed.

latexify_u3col Format value in LaTeX, suitable for tables of uncertain values.

latexify Format a value in LaTeX appropriately.

6.3.3 Helpers for TableBuilder

AlignedNumberFormatter Format numbers, aligning them at the decimal point.

BasicFormatter Base class for formatters.

56 Chapter 6. Data input and output

pwkit, Release 0.6.99

BoolFormatter Format a boolean; default is True -> bullet, False -> nothing.

LimitFormatter Format measurements for a table of limits.

MaybeNumberFormatter Format numbers with a fixed number of decimal places, or objects with __pk_latex__().

UncertFormatter Format measurements for a table of detailed uncertainties.

WideHeader Helper for multi-column headers.

XXX: Barely tested!

class pwkit.latex.AlignedNumberFormatter(nplaces=1)
Format numbers. Allows the number of decimal places to be specified, and aligns the numbers at the decimal
point.

class pwkit.latex.BasicFormatter
Base class for formatting table cells in a TableBuilder.

Generally a formatter will also provide methods for turning input data into fancified LaTeX output that can be
used by the column’s “data function”.

colinfo(builder)
Return (nlcol, colspec, headprefix), where:

nlcol - The number of LaTeX columns encompassed by this logical column.

colspec - Its LaTeX column specification (None to force user to specify).

headprefix - Prefix applied before heading items in {} (e.g., “colhead”).

class pwkit.latex.BoolFormatter
Format booleans. Attributes truetext and falsetext set what shows up for true and false values, respectively.

class pwkit.latex.LimitFormatter
Format measurements (cf pwkit.msmt) with nice-looking limit information. Specific uncertainty information is
discarded. The default formats do not involve fancy subscripts or superscripts, so row struts are not needed ...
by default.

class pwkit.latex.MaybeNumberFormatter(nplaces=1, align=’c’)
Format Python objects. If it’s a number, format it as such, without any fancy column alignment, but with a
specifiable number of decimal places. Otherwise, call latexify() on it.

class pwkit.latex.Referencer
Accumulate a numbered list of bibtex references. Methods:

refkey (bibkey) Return a string that should be used to give a numbered reference to the given bibtex key.
“thiswork” is handled specially.

dump () Return a string with citet{} commands identifing all of the numbered references.

Attributes:

thisworktext text referring to “this work”; defaults to that.

thisworkmarker special symbol used to denote “this work”; defaults to star.

Bibtex keys beginning with asterisks have the rest of their value used for the citation text, rather than
“citet{<key>}”.

class pwkit.latex.TableBuilder(label)
Build and then emit a nice deluxetable.

Methods:

addcol (headings, datafunc, formatter=None, colspec=None, numbering=’(%d)’) Define a logical column.

6.3. Outputting data in LaTeX format (pwkit.latex) 57

pwkit, Release 0.6.99

addnote (key, text) Define a table note that can appear in cells.

addhcline (headerrowix, logcolidx, latexdeltastart, latexdeltaend) Add a horizontal line between columns.

notemark (key) Return a tablenotemark{} command for the specified note key.

emit (stream, items) Write the table, with one row for each thing in items, to the stream.

If an item has an attribute tb_row_preamble, that text is written verbatim before that corresponding row is output.

Attributes:

environment The name of the latex environment to use, default “deluxetable”. You may want to specify “delux-
etable*”, or “mydeluxetable” if using a hacked package.

label The latex reference label of the table. Mandatory.

note A note at the table footer (“tablecomments{}” in LaTeX).

preamble Commands for table preamble. See below.

refs Contents of the table References section.

title Table title. Default “Untitled table”.

widthspec Passed to tablewidth{}; default “0em” = auto-widen.

numbercols If True, number each column. This can be disabled on a col-by-col basis by calling addcol with
numbering set to False.

Legal preamble commands are:

\rotate
\tablenum{<manual table identifier>}
\tabletypesize{}

The commands tablecaption, tablecolumns, tablehead, and tablewidth are handled specially.

If tablewidth{} is not provided, the table is set at full width, not its natural width, which is a lame default. The
default widthspec lets us auto-widen while providing a clear avenue to customizing the width.

addcol(headings, datafunc, formatter=None, colspec=None, numbering=u’(%d)’)
Define a logical column. Arguments:

headings A string, or list of strings and WideHeaders. The headings are stacked vertically in the table
header section.

datafunc Return LaTeX for this cell. Call spec should be (item, [formatter, [tablebuilder]]).

formatter The formatter to use; defaults to a new BasicFormatter.

colspec The LaTeX column specification letters to use; defaults to ‘c’s.

numbering If non-False, a format for writing this column’s number; if False, no number is written.

addhcline(headerrowidx, logcolidx, latexdeltastart, latexdeltaend)
Adds a horizontal line below a limited range of columns in the header section. Arguments:

headerrowidx - The 0-based row number below which the line will be drawn; i.e. 0 means that the
line will be drawn below the first row of header cells.

logcolidx - The 0-based ‘logical’ column number relative to which the line will be placed; i.e. 1 means
that the line placement will be relative to the second column defined in an addcol() call.

latexdeltastart - The relative position at which to start drawing the line relative to that logical col-
umn, in LaTeX columns; typically going to be zero.

58 Chapter 6. Data input and output

pwkit, Release 0.6.99

latexdeltaend - The relative position at which to finish drawing the line, in the standard Python non-
inclusive sense. I.e., if you want to underline two LaTeX columns, latexdeltaend = latexdeltastart +
2.

class pwkit.latex.UncertFormatter
Format measurements (cf. pwkit.msmt) with detailed uncertainty information, possibly including asymmetric
uncertainties. Because of the latter possibility, table rows have to be made extra-high to maintain evenness.

class pwkit.latex.WideHeader(nlogcols, content, align=’c’)
Information needed for constructing wide table headers.

nlogcols - Number of logical columns consumed by this header. content - The LaTeX to insert for this header’s
content. align - The alignment of this header; default ‘c’.

Rendered as multicolumn{nlatex}{align}{content}, where nlatex is the number of LaTeX columns spanned by
this header – which may be larger than nlogcols if certain logical columns span multiple LaTeX columns.

pwkit.latex.latexify_l3col(obj, **kwargs)
Convert an object to special LaTeX for limit tables.

This conversion is meant for limit values in a table. The return value should span three columns. The first
column is the limit indicator: <, >, ~, etc. The second column is the whole part of the value, up until just before
the decimal point. The third column is the decimal point and the fractional part of the value, if present. If the
item being formatted does not fit this schema, it can be wrapped in something like ‘multicolumn{3}{c}{...}’.

pwkit.latex.latexify_n2col(x, nplaces=None, **kwargs)
Render a number into LaTeX in a 2-column format, where the columns split immediately to the left of the
decimal point. This gives nice alignment of numbers in a table.

pwkit.latex.latexify_u3col(obj, **kwargs)
Convert an object to special LaTeX for uncertainty tables.

This conversion is meant for uncertain values in a table. The return value should span three columns. The first
column ends just before the decimal point in the main number value, if it has one. It has no separation from the
second column. The second column goes from the decimal point until just before the “plus-or-minus” indicator.
The third column goes from the “plus-or-minus” until the end. If the item being formatted does not fit this
schema, it can be wrapped in something like ‘multicolumn{3}{c}{...}’.

pwkit.latex.latexify(obj, **kwargs)
Render an object in LaTeX appropriately.

6.4 Reading and writing data tables with types and uncertainties
(pwkit.tabfile)

pwkit.tabfile - I/O with typed tables of uncertain measurements.

Functions:

read - Read a typed table file. vizread - Read a headerless table file, with columns specified separately write - Write a
typed table file.

The table format is line-oriented text. Hashes denote comments. Initial lines of the form “colname = value” set
a column name that gets the same value for every item in the table. The header line is prefixed with an @ sign.
Subsequent lines are data rows.

pwkit.tabfile.read(path, tabwidth=8, **kwargs)
Read a typed tabular text file into a stream of Holders.

Arguments:

6.4. Reading and writing data tables with types and uncertainties (pwkit.tabfile) 59

pwkit, Release 0.6.99

path The path of the file to read.

tabwidth=8 The tab width to assume. Please don’t monkey with it.

mode=’rt’ The file open mode (passed to io.open()).

noexistok=False If True and the file is missing, treat it as empty.

**kwargs Passed to io.open ().

Returns a generator for a stream of pwkit.Holder‘s, each of which will contain ints, strings, or some kind of
measurement (cf ‘pwkit.msmt).

pwkit.tabfile.vizread(descpath, descsection, tabpath, tabwidth=8, **kwargs)
Read a headerless tabular text file into a stream of Holders.

Arguments:

descpath The path of the table description ini file.

descsection The section in the description file to use.

tabpath The path to the actual table data.

tabwidth=8 The tab width to assume. Please don’t monkey with it.

mode=’rt’ The table file open mode (passed to io.open()).

noexistok=False If True and the file is missing, treat it as empty.

**kwargs Passed to io.open ().

Returns a generator of a stream of pwkit.Holder‘s, each of which will contain ints, strings, or some kind of
measurement (cf ‘pwkit.msmt). In this version, the table file does not contain a header, as seen in Vizier data
files. The corresponding section in the description ini file has keys of the form “colname = <start> <end>
[type]”, where <start> and <end> are the 1-based character numbers defining the column, and [type] is an
optional specified of the measurement type of the column (one of the usual b, i, f, u, Lu, Pu).

pwkit.tabfile.write(stream, items, fieldnames, tabwidth=8)
Write a typed tabular text file to the specified stream.

Arguments:

stream The destination stream.

items An iterable of items to write. Two passes have to be made over the items (to discover the needed column
widths), so this will be saved into a list.

fieldnames Either a list of field name strings, or a single string. If the latter, it will be split into a list with
.split().

tabwidth=8 The tab width to use. Please don’t monkey with it.

Returns nothing.

6.5 An “ini” file format with typed, uncertain data (pwkit.tinifile)

pwkit.tinifile - Dealing with typed ini-format files full of measurements.

Functions:

read Generate pwkit.Holder instances of measurements from an ini-format file.

write Write pwkit.Holder instances of measurements to an ini-format file.

60 Chapter 6. Data input and output

pwkit, Release 0.6.99

read_stream Lower-level version; only operates on streams, not path names.

write_stream Lower-level version; only operates on streams, not path names.

pwkit.tinifile.write_stream(stream, holders, defaultsection=None, extrapos=(), sha1sum=False,
**kwargs)

extrapos is basically a hack for multi-step processing. We have some flux measurements that are computed from
luminosities and distances. The flux value is therefore an unwrapped Uval, which doesn’t retain memory of any
positivity constraint it may have had. Therefore, if we write out such a value using this routine, we may get
something like fx:u = 1pm1, and the next time it’s read in we’ll get negative fluxes. Fields listed in extrapos will
have a “P” constraint added if they are imprecise and their typetag is just “f” or “u”.

6.6 Converting Unicode to LaTeX notation (pwkit.unicode_to_latex)

unicode_to_latex - what it says

Provides unicode_to_latex(u) and unicode_to_latex_string(u).

unicode_to_latex returns ASCII bytes that can be fed to LaTeX to reproduce the Unicode string ‘u’ as closely as
possible.

unicode_to_latex_string returns a Unicode string rather than bytes. That is:

unicode_to_latex(u) = unicode_to_latex_string(u).encode('ascii').

6.6. Converting Unicode to LaTeX notation (pwkit.unicode_to_latex) 61

pwkit, Release 0.6.99

62 Chapter 6. Data input and output

CHAPTER 7

External Software Environments

This documentation has a lot of stubs.

7.1 CASA (pwkit.environments.casa)

casa - running software in the CASA environment

To use, export an environment variable $PWKIT_CASA pointing to the CASA installation root. The files
$PWKIT_CASA/asdm2MS and $PWKIT_CASA/casapy should exist.

XXX untested with 32-bit, probably won’t work. XXX test only on Linux, probably needs work for Macs.

7.1.1 CASA installation notes

Download tarball as linked from http://casa.nrao.edu/casa_obtaining.shtml . Tarball unpacks to some versioned sub-
directory. The names and version codes are highly variable and annoying.

7.2 Compact-source photometry with discrete Fourier transforma-
tions (pwkit.environments.casa.dftphotom)

pwkit.environments.casa.dftphotom - point-source photometry from visibilities

CASA doesn’t yet have a task to do this.

7.3 Structured scripting within casapy (pwkit.environments.casa.scripting)

pwkit.environments.casa.scripting - scripted invocation of casapy.

The “casapy” program is extremely resistant to encapsulated scripting – it pops up GUI windows and child processes,
leaves log files around, provides a non-vanilla Python environment, and so on. However, sometimes scripting CASA
is what we need to do. This tool enables that.

We provide a single-purpose CLI tool for this functionality, so that you can write standalone scripts with a hashbang
line of “#! /usr/bin/env pkcasascript” – hashbang lines support only one extra command-line argument, so if we’re
using “env” we can’t take a multitool approach.

63

http://casa.nrao.edu/casa_obtaining.shtml

pwkit, Release 0.6.99

class pwkit.environments.casa.scripting.CasapyScript(script, raise_on_error=True,
**kwargs)

Context manager for launching a script in the casapy environment. This involves creating a temporary wrapper
and then using the CasaEnvironment to run it in a temporary directory.

When this context manager is entered, the script is launched and the calling process waits until it finishes. This
object is returned. The with statement body is then executed so that information can be extracted from the results
of the casapy invocation. When the context manager is exited, the casapy files are (usually) cleaned up.

Attributes:

args the arguments to passed to the script.

env the CasaEnvironment used to launch the casapy process.

exitcode the exit code of the casapy process. 0 is success. 127 indicates an intentional error exit by the script;
additional diagnostics don’t need printing and the work directory doesn’t need preservation. Negative
values indicate death from a signal.

proc the subprocess.Popen instance of casapy; inside the context manager body it’s already exited.

rmtree boolean; whether to delete the working tree upon context manager exit.

script the path to the script to be invoked.

workdir the working directory in which casapy was started.

wrapped the path to the wrapper script run inside casapy.

There is a very large overhead to running casapy scripts. The outer Python code sleeps for at least 5 seconds to
allow various cleanups to happen.

7.4 Merging spectral windows in visibility data
(pwkit.environments.casa.spwglue)

pwkit.environments.casa.spwglue - merge spectral windows in a MeasurementSet

I find that merging windows in this way offers a lot of advantages. This procesing step is very slow, however.

class pwkit.environments.casa.spwglue.Progress
This could be split out; it’s useful.

7.5 Quick access to basic CASA tasks (pwkit.environments.casa.tasks)

pwkit.environments.casa.tasks - library of clones of CASA tasks

The way that the casapy code is written it’s basically impossible to import its tasks into a straight-Python environment
(trust me, I’ve tried), so we’re more-or-less duplicating lots of CASA code. I try to provide saner semantics, APIs, etc.

The goal is to make task-like functionality as a real Python library with no side effects, so that we can actually script
data processing. While we’re at it, we make them available on the command line.

pwkit.environments.casa.tasks.listobs(vis)
Generates a set of lines of output. Errors are only detected by looking at the output.

64 Chapter 7. External Software Environments

pwkit, Release 0.6.99

7.6 Utilities for Python invocation of CASA tools
(pwkit.environments.casa.util)

pwkit.environments.casa.util - core utilities for the CASA Python libraries

Variables are:

INVERSE_C_SM Inverse of C in s/m (useful for wavelength to time conversion)

INVERSE_C_NSM Inverse of C in ns/m (ditto).

pol_names Dict mapping CASA polarization codes to their string names.

pol_to_miriad Dict mapping CASA polarization codes to their MIRIAD equivalents.

msselect_keys A set of the keys supported by the CASA ms-select subsystem.

tools An object for constructing CASA tools: ia = tools.image ().

Functions are:

datadir Return the CASA data directory.

logger Create a CASA logger that prints to stderr without leaving a casapy.log file around.

forkandlog Run a function in a subprocess, returning the text it outputs via the CASA logging subsystem.

sanitize_unicode Encode Unicode strings as bytes for interfacing with casac functions.

pwkit.environments.casa.util.sanitize_unicode(item)
The Python bindings to CASA tasks expect to receive all string values as binary data (Python 2.X “str” or 3.X
“bytes”) and not Unicode (Python 2.X “unicode” or 3.X “str”). To prep for Python 3 (not that CASA will ever be
compatible with it ...) I true to use the unicode_literals everywhere, and other Python modules are getting better
about using Unicode consistently, so this causes problems. This helper converts Unicode into UTF-8 encoded
bytes, handling the common data structures that are passed to CASA functions.

I usually import this as just ‘b’ and write tool.method (b(arg)), in analogy with the b” byte string syntax.

7.7 HEASoft (pwkit.environments.heasoft)

heasoft - running software in the HEAsoft/CALDB environment

To use, export an environment variable $PWKIT_HEASOFT pointing to the HEAsoft platform-specific di-
rectory, usually known as $HEADAS. E.g., $PWKIT_HEASOFT/bin, $PWKIT_HEASOFT/BUILD_DIR, and
$PWKIT_HEASOFT/headas-init.sh should exist. CALDB also needs to be set up as described below.

“pfiles” are set up to land in ~/.local/share/hea-pfiles/.

7.7.1 HEAsoft installation notes

(All examples assume version 6.16 for convenience, substitute as needed of course.)

Installation from source strongly recommended. Download from something like
http://heasarc.gsfc.nasa.gov/FTP/software/lheasoft/release/heasoft-6.16src.tar.gz - the website lets you customize the
tarball, but it’s probably easiest just to do the full install every time. Tarball unpacks into heasoft-6.16/... so you can
safely curl|tar in ~/sw/.

$ cd heasoft-6.16/BUILD_DIR $./configure –prefix=/a/heasoft/6.16 $ make # note: not parallel-friendly $ make install

The CALDB setup is so lightweight that it’s not worth separating it out:

7.6. Utilities for Python invocation of CASA tools (pwkit.environments.casa.util) 65

http://heasarc.gsfc.nasa.gov/FTP/software/lheasoft/release/heasoft-6.16src.tar.gz

pwkit, Release 0.6.99

$ cd /a/heasoft/6.16 $ wget http://heasarc.gsfc.nasa.gov/FTP/caldb/software/tools/caldb.config $ wget
http://heasarc.gsfc.nasa.gov/FTP/caldb/software/tools/alias_config.fits

7.8 SAS (pwkit.environments.sas)

sas - running software in the SAS environment

To use, export an environment variable $PWKIT_SAS pointing to the SAS installation root. The files
$PWKIT_SAS/RELEASE and $PWKIT_SAS/setsas.sh should exist. The “current calibration files” (CCF) should
be accessible as $PWKIT_SAS/ccf/; a symlink may make sense if multiple SAS versions are going to be used.

SAS is unusual because you need to set up some magic environment variables specific to the dataset that you’re
working with. There is also default preparation to be run on each dataset before anything useful can be done.

7.8.1 Unpacking data sets

Data sets are downloaded as tar.gz files. Those unpack to a few files in ‘.’ including a .TAR file, which should be
unpacked too. That unpacks to a bunch of data files in ‘.’ as well.

7.8.2 SAS installation notes

Download tarball from, e.g.,

ftp://legacy.gsfc.nasa.gov/xmm/software/sas/14.0.0/64/Linux/Fedora20/

Tarball unpacks installation script and data into ‘.’, and the installation script sets up a SAS install in a versioned
subdirectory of ‘.’, so curl|tar should be run from something like /a/sas:

$./install.sh

The CCF are like CALDB and need to be rsynced – see the update-ccf subcommand.

7.8.3 ODF data format notes

ODF files all have names in the format RRRR_NNNNNNNNNN_IIUEEECCMMM.ZZZ where:

RRRR revolution (orbit) number

NNNNNNNNNN obs ID

II The instrument:

OM optical monitor

R1 RGS (reflection grating spectrometer) unit 1

R2 RGS 2

M1 EPIC (imaging camera) MOS 1 detector

M2 EPIC (imaging camera) MOS 2 detector

PN EPIC (imaging camera) PN detector

RM EPIC radiation monitor

SC spacecraft

66 Chapter 7. External Software Environments

http://heasarc.gsfc.nasa.gov/FTP/caldb/software/tools/caldb.config
http://heasarc.gsfc.nasa.gov/FTP/caldb/software/tools/alias_config.fits
ftp://legacy.gsfc.nasa.gov/xmm/software/sas/14.0.0/64/Linux/Fedora20/

pwkit, Release 0.6.99

U Scheduling status of exposure:

S scheduled

U unscheduled

X N/A

EEE exposure number

CC CCD/OM-window ID

MMM data type of file (many; not listed here)

ZZZ file extension

See the make-*-aliases commands for tools that generate symlinks with saner names.

7.9 SAS (pwkit.environments.sas.data)

pwkit.environments.sas.data - loading up SAS data sets

7.9. SAS (pwkit.environments.sas.data) 67

pwkit, Release 0.6.99

68 Chapter 7. External Software Environments

CHAPTER 8

Tools for writing command-line programs

This documentation has a lot of stubs.

8.1 Utilities for command-line programs (pwkit.cli)

pwkit.cli - miscellaneous utilities for command-line programs.

Functions:

backtrace_on_usr1 - Make it so that a Python backtrace is printed on SIGUSR1. check_usage - Print usage and exit if
–help is in argv. die - Print an error and exit. pop_option - Check for a single command-line option. propagate_sigint
- Ensure that calling shells know when we die from SIGINT. show_usage - Print a usage message. unicode_stdio -
Ensure that sys.std{in,out,err} accept unicode strings. warn - Print a warning. wrong_usage - Print an error about
wrong usage and the usage help.

Context managers:

print_tracebacks - Catch exceptions and print tracebacks without reraising them.

Submodules:

multitool - Framework for command-line programs with sub-commands.

pwkit.cli.check_usage(docstring, argv=None, usageifnoargs=False)
Check if the program has been run with a –help argument; if so, print usage information and exit.

Parameters

• docstring (str) – the program help text

• argv – the program arguments; taken as sys.argv if given as None (the default). (Note
that this implies argv[0] should be the program name and not the first option.)

• usageifnoargs (bool) – if True, usage information will be printed and the program
will exit if no command-line arguments are passed. If “long”, print long usasge. Default is
False.

This function is intended for small programs launched from the command line. The intention is for the program
help information to be written in its docstring, and then for the preamble to contain something like:

"""myprogram - this is all the usage help you get"""
import sys
... # other setup
check_usage (__doc__)
... # go on with business

69

https://docs.python.org/library/functions.html#str
https://docs.python.org/library/sys.html#sys.argv
https://docs.python.org/library/functions.html#bool

pwkit, Release 0.6.99

If it is determined that usage information should be shown, show_usage() is called and the program exits.

See also wrong_usage().

pwkit.cli.die(fmt, *args)
Raise a SystemExit exception with a formatted error message.

Parameters

• fmt (str) – a format string

• args – arguments to the format string

If args is empty, a SystemExit exception is raised with the argument ’error: ’ + str (fmt).
Otherwise, the string component is fmt % args. If uncaught, the interpreter exits with an error code and
prints the exception argument.

Example:

if ndim != 3:
die ('require exactly 3 dimensions, not %d', ndim)

pwkit.cli.pop_option(ident, argv=None)
A lame routine for grabbing command-line arguments. Returns a boolean indicating whether the option was
present. If it was, it’s removed from the argument string. Because of the lame behavior, options can’t be
combined, and non-boolean options aren’t supported. Operates on sys.argv by default.

Note that this will proceed merrily if argv[0] matches your option.

class pwkit.cli.print_tracebacks(types=(<type ‘exceptions.Exception’>,), header=None,
file=None)

Context manager that catches exceptions and prints their tracebacks without reraising them. Intended for robust
programs that want to continue execution even if something bad happens; this provides the infrastructure to
swallow exceptions while still preserving exception information for later debugging.

You can specify which exception classes to catch with the types keyword argument to the constructor. The
header keyword will be printed if specified; this could be used to add contextual information. The file keyword
specifies the destination for the printed output; default is sys.stderr.

Instances preserve the exception information in the fields ‘etype’, ‘evalue’, and ‘etb’ if your program in fact
wants to do something with the information. One basic use would be checking whether an exception did, in fact,
occur.

pwkit.cli.show_usage(docstring, short, stream, exitcode)
Print program usage information and exit.

Parameters docstring (str) – the program help text

This function just prints docstring and exits. In most cases, the function check_usage() should be used: it
automatically checks sys.argv for a sole “-h” or “–help” argument and invokes this function.

This function is provided in case there are instances where the user should get a friendly usage message that
check_usage() doesn’t catch. It can be contrasted with wrong_usage(), which prints a terser usage
message and exits with an error code.

pwkit.cli.unicode_stdio()
Make sure that the standard I/O streams accept Unicode.

The standard I/O streams accept bytes, not Unicode characters. This means that in principle every Unicode
string that we want to output should be encoded to utf-8 before print()ing. But Python 2.X has a hack where, if
the output is a terminal, it will automatically encode your strings, using UTF-8 in most cases.

BUT this hack doesn’t kick in if you pipe your program’s output to another program. So it’s easy to write a tool
that works fine in most cases but then blows up when you log its output to a file.

70 Chapter 8. Tools for writing command-line programs

https://docs.python.org/library/functions.html#str
https://docs.python.org/library/functions.html#str
https://docs.python.org/library/sys.html#sys.argv

pwkit, Release 0.6.99

The proper solution is just to do the encoding right. This function sets things up to do this in the most sensible
way I can devise. This approach sets up compatibility with Python 3, which has the stdio streams be in text
mode rather than bytes mode to begin with.

Basically, every command-line Python program should call this right at startup. I’m tempted to just invoke this
code whenever this module is imported since I foresee many accidentally omissions of the call.

pwkit.cli.wrong_usage(docstring, *rest)
Print a message indicating invalid command-line arguments and exit with an error code.

Parameters

• docstring (str) – the program help text

• rest – an optional specific error message

This function is intended for small programs launched from the command line. The intention is for the program
help information to be written in its docstring, and then for argument checking to look something like this:

"""mytask <input> <output>

Do something to the input to create the output.
"""
...
import sys
... # other setup
check_usage (__doc__)
... # more setup
if len (sys.argv) != 3:

wrong_usage (__doc__, "expect exactly 2 arguments, not %d",
len (sys.argv))

When called, an error message is printed along with the first stanza of docstring. The program then exits with an
error code and a suggestion to run the program with a –help argument to see more detailed usage information.
The “first stanza” of docstring is defined as everything up until the first blank line, ignoring any leading blank
lines.

The optional message in rest is treated as follows. If rest is empty, the error message “invalid command-line
arguments” is printed. If it is a single item, the stringification of that item is printed. If it is more than one item,
the first item is treated as a format string, and it is percent-formatted with the remaining values. See the above
example.

See also check_usage() and show_usage().

8.2 Parsing keyword-style program arguments (pwkit.kwargv)

The pwkit.kwargv module provides a framework for parsing keyword-style arguments to command-line programs.
It’s designed so that you can easily make a routine with complex, structured configuration parameters that can also be
driven from the command line.

Keywords are defined by declaring a subclass of the ParseKeywords class with fields corresponding to the support
keywords:

from pwkit.kwargv import ParseKeywords, Custom

class MyConfig (ParseKeywords):
foo = 1
bar = str
multi = [int]

8.2. Parsing keyword-style program arguments (pwkit.kwargv) 71

https://docs.python.org/library/functions.html#str

pwkit, Release 0.6.99

extra = Custom (float, required=True)

@Custom (str)
def declination (value):

from pwkit.astutil import parsedeglat
return parsedeglat (value)

Instantiating the subclass fills in all defaults. Calling the ParseKeywords.parse() method parses a list of strings
(defaulting to sys.argv[1:]) and updates the instance’s properties. This framework is designed so that you can
provide complex configuration to an algorithm either programmatically, or on the command line. A typical use would
be:

from pwkit.kwargv import ParseKeywords, Custom

class MyConfig (ParseKeywords):
niter = 1
input = str
scales = [int]
...

def my_complex_algorithm (cfg):
from pwkit.io import Path
data = Path (cfg.input).read_fits ()

for i in xrange (cfg.niter):
....

def call_algorithm_in_code ():
cfg = MyConfig ()
cfg.input = 'testfile.fits'
...
my_complex_algorithm (cfg)

if __name__ == '__main__':
cfg = MyConfig ().parse ()
my_complex_algorithm (cfg)

You could then execute the module as a program and specify arguments in the form ./program niter=5
input=otherfile.fits.

8.2.1 Keyword Specification Format

Arguments are specified in the following ways:

• foo = 1 defines a keyword with a default value, type inferred as int. Likewise for str, bool, float.

• bar = str defines an string keyword with default value of None. Likewise for int, bool, float.

• multi = [int] parses as a list of integers of any length, defaulting to the empty list [] (I call these “flexible”
lists.). List items are separated by commas on the command line.

• other = [3.0, int] parses as a 2-element list, defaulting to [3.0, None]. If one value is given, the
first array item is parsed, and the second is left as its default. (I call these “fixed” lists.)

• extra = Custom(float, required=True) parses like float and then customizes keyword proper-
ties. Supported properties are the attributes of the KeywordInfo class.

• Use Custom as a decorator (@Custom) on a function foo defines a keyword foo that’s parsed according to
the Custom specification, then has its value fixed up by calling the foo() function after the basic parsing.

72 Chapter 8. Tools for writing command-line programs

pwkit, Release 0.6.99

That is, the final value is foo (intermediate_value). A common pattern is to use a fixup function for a
fixed list where the first few values are mandatory (see KeywordInfo.minvals below) but later values can
be guessed or defaulted.

See the KeywordInfo documentation for specification of additional keyword properties that may be specified. The
Custom name is simply an alias for KeywordInfo.

exception pwkit.kwargv.KwargvError(fmt, *args)
Raised when invalid arguments have been provided.

exception pwkit.kwargv.ParseError(fmt, *args)
Raised when the structure of the arguments appears legitimate, but a particular value cannot be parsed into its
expected type.

class pwkit.kwargv.KeywordInfo
Properties that a keyword argument may have.

default = None
The default value for the keyword if it’s left unspecified.

fixupfunc = None
If not None, the final value of the keyword is set to the return value of
fixupfunc(intermediate_value).

maxvals = None
The maximum number of values allowed. This only applies for flexible lists; fixed lists have predetermined
sizes.

minvals = 0
The minimum number of values allowed in a flexible list, if the keyword is specified at all. If you want
minvals = 1, use required = True.

parser = None
A callable used to convert the argument text to a Python value. This attribute is assigned automatically
upon setup.

printexc = False
Print the exception as normal if there’s an exception when parsing the keyword value. Otherwise there’s
just a message along the lines of “cannot parse value <val> for keyword <kw>”.

repeatable = False
If true, the keyword value(s) will always be contained in a list. If they keyword is specified multiple
times (i.e. ./program kw=1 kw=2), the list will have multiple items (cfg.kw = [1, 2]). If the
keyword is list-valued, using this will result in a list of lists.

required = False
Whether an error should be raised if the keyword is not seen while parsing.

scale = None
If not None, multiply numeric values by this number after parsing.

sep = u’,’
The textual separator between items for list-valued keywords.

uiname = None
The name of the keyword as parsed from the command-line. For instance, some_value = Custom
(int, uiname="some-value") will result in a keyword that the user sets by calling ./program
some-value=3. This provides a mechanism to support keyword names that are not legal Python identi-
fiers.

8.2. Parsing keyword-style program arguments (pwkit.kwargv) 73

pwkit, Release 0.6.99

class pwkit.kwargv.ParseKeywords
The template class for defining your keyword arguments. A subclass of pwkit.Holder. Declare attributes in
a subclass following the scheme described above, then call the ParseKeywords.parse() method.

parse(args=None)
Parse textual keywords as described by this class’s attributes, and update this instance’s attributes with
the parsed values. args is a list of strings; if None, it defaults to sys.argv[1:]. Returns self for
convenience. Raises KwargvError if invalid keywords are encountered.

See also ParseKeywords.parse_or_die().

parse_or_die(args=None)
Like ParseKeywords.parse(), but calls pkwit.cli.die() if a KwargvError is raised, print-
ing the exception text. Returns self for convenience.

pwkit.kwargv.basic(args=None)
Parse the string list args as a set of keyword arguments in a very simple-minded way, splitting on equals signs.
Returns a pwkit.Holder instance with attributes set to strings. The form +foo is mapped to setting foo =
True on the pwkit.Holder instance. If args is None, sys.argv[1:] is used. Raises KwargvError
on invalid arguments (i.e., ones without an equals sign or a leading plus sign).

8.3 Command-line programs with sub-commands
(pwkit.cli.multitool)

pwkit.cli.multitool - Framework for command-line tools with sub-commands

This module provides a framework for quickly creating command-line programs that have multiple independent sub-
commands (similar to the way Git’s interface works).

Classes:

Command A command supported by the tool.

DelegatingCommand A command that delegates to named sub-commands.

HelpCommand A command that prints the help for other commands.

Multitool The tool itself.

UsageError Raised if illegal command-line arguments are used.

Functions:

invoke_tool Run as a tool and exit.

Standard usage:

class MyCommand (multitool.Command):
name = 'info'
summary = 'Do something useful.'

def invoke (self, args, **kwargs):
print ('hello')

class MyTool (multitool.MultiTool):
cli_name = 'mytool'
summary = 'Do several useful things.'

HelpCommand = multitool.HelpCommand # optional

74 Chapter 8. Tools for writing command-line programs

pwkit, Release 0.6.99

def commandline ():
multitool.invoke_tool (globals ())

pwkit.cli.multitool.invoke_tool(namespace, tool_class=None)
Invoke a tool and exit.

namespace is a namespace-type dict from which the tool is initialized. It should contain exactly one value that
is a Multitool subclass, and this subclass will be instantiated and populated (see Multitool.populate()) using
the other items in the namespace. Instances and subclasses of Command will therefore be registered with the
Multitool. The tool is then invoked.

pwkit.cli.propagate_sigint() and pwkit.cli.unicode_stdio() are called at the start of this function. It should there-
fore be only called immediately upon startup of the Python interpreter.

This function always exits with an exception. The exception will be SystemExit (0) in case of success.

The intended invocation is invoke_tool (globals ()) in some module that defines a Multitool subclass and multiple
Command subclasses.

If tool_class is not None, this is used as the tool class rather than searching namespace, potentially avoiding
problems with modules containing multiple Multitool implementations.

class pwkit.cli.multitool.Command
A command in a multifunctional CLI tool.

Attributes:

argspec One-line string summarizing the command-line arguments that should be passed to this command.

help_if_no_args If True, usage help will automatically be displayed if no command-line arguments are given.

more_help Additional help text to be displayed below the summary (optional).

name The command’s name, as should be specified at the CLI.

summary A one-line summary of this command’s functionality.

Functions:

invoke(self, args, **kwargs) Execute this command.

‘name’ must be set; other attributes are optional, although at least ‘summary’ and ‘argspec’ should be set.
‘invoke()’ must be implemented.

invoke(args, **kwargs)
Invoke this command. ‘args’ is a list of the remaining command-line arguments. ‘kwargs’ contains at
least ‘argv0’, which is the equivalent of, well, argv[0] for this command; ‘tool’, the originating Multi-
tool instance; and ‘parent’, the parent DelegatingCommand instance. Other kwargs may be added in an
application-specific manner. Basic processing of ‘–help’ will already have been done if invoked through
invoke_with_usage().

invoke_with_usage(args, **kwargs)
Invoke the command with standardized usage-help processing. Same calling convention as Com-
mand.invoke().

class pwkit.cli.multitool.DelegatingCommand(populate_from_self=True)
A command that delegates to sub-commands.

Attributes:

cmd_desc The noun used to desribe the sub-commands.

usage_tmpl A formatting template for long tool usage. The default is almost surely acceptable.

Functions:

8.3. Command-line programs with sub-commands (pwkit.cli.multitool) 75

pwkit, Release 0.6.99

register Register a new sub-command.

populate Register many sub-commands automatically.

invoke_command(cmd, args, **kwargs)
This function mainly exists to be overridden by subclasses.

populate(values)
Register multiple new commands by investigating the iterable values. For each item in values, instances
of Command are registered, and subclasses of Command are instantiated (with no arguments passed to the
constructor) and registered. Other kinds of values are ignored. Returns ‘self’.

register(cmd)
Register a new command with the tool. ‘cmd’ is expected to be an instance of Command, although here
only the cmd.name attribute is investigated. Multiple commands with the same name are not allowed to be
registered. Returns ‘self’.

class pwkit.cli.multitool.Multitool
A command-line tool with multiple sub-commands.

Attributes:

cli_name - The usual name of this tool on the command line. more_help - Additional help text.
summary - A one-line summary of this tool’s functionality.

Functions:

commandline - Execute a command as if invoked from the command-line. register - Register a new
command. populate - Register many commands automatically.

commandline(argv)
Run as if invoked from the command line. ‘argv’ is a Unix-style list of arguments, where the zeroth item is
the program name (which is ignored here). Usage help is printed if deemed appropriate (e.g., no arguments
are given). This function always terminates with an exception, with the exception being a SystemExit(0)
in case of success.

Note that we don’t actually use argv[0] to set argv0 because it will generally be the full path to the script
name, which is unattractive.

exception pwkit.cli.multitool.UsageError(fmt, *args)
Raised if illegal command-line arguments are used in a Multitool program.

76 Chapter 8. Tools for writing command-line programs

CHAPTER 9

Behind-the-scenes infrastructure

This documentation has a lot of stubs.

9.1 Interfacing with other software environments
(pwkit.environments)

pwkit.environments - working with external software environments

Classes:

Environment - base class for launching programs in an external environment.

Submodules:

heasoft - HEAsoft sas - SAS

Functions:

prepend_environ_path - Prepend into a $PATH in an environment dict. prepend_path - Prepend text into
a $PATH-like environment variable. user_data_path - Generate paths for storing miscellaneous user data.

Standard usage is to create an Environment instance, then use its launch(argv, ...) method to run programs in the
specified environment. launch() returns a subprocess.Popen instance that can be used in the standard ways.

pwkit.environments.prepend_environ_path(env, name, text, pathsep=’:’)
Prepend text into a $PATH-like environment variable. env is a dictionary of environment variables and name is
the variable name. pathsep is the character separating path elements, defaulting to os.pathsep. The variable will
be created if it is not already in env. Returns env.

Example:

prepend_environ_path (env, b’PATH’, b’/mypackage/bin’)

pwkit.environments.prepend_path(orig, text, pathsep=’:’)
Returns a $PATH-like environment variable with text prepended. orig is the original variable value, or None.
pathsep is the character separating path elements, defaulting to os.pathsep.

Example:

newpath = cli.prepend_path (oldpath, ‘/mypackage/bin’)

See also prepend_environ_path.

77

pwkit, Release 0.6.99

9.2 Helper for decorators on class methods
(pwkit.method_decorator)

Python decorator that knows the class the decorated method is bound to.

Please see full description here: https://github.com/denis-ryzhkov/method_decorator/blob/master/README.md

method_decorator version 0.1.3 Copyright (C) 2013 by Denis Ryzhkov <denisr@denisr.com> MIT License, see
http://opensource.org/licenses/MIT

78 Chapter 9. Behind-the-scenes infrastructure

https://github.com/denis-ryzhkov/method_decorator/blob/master/README.md
mailto:denisr@denisr.com
http://opensource.org/licenses/MIT

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

79

pwkit, Release 0.6.99

80 Chapter 10. Indices and tables

Python Module Index

p
pwkit, 5
pwkit.astimage, 23
pwkit.astutil, 21
pwkit.bblocks, 24
pwkit.cgs, 25
pwkit.cli, 69
pwkit.cli.astrotool, 45
pwkit.cli.imtool, 45
pwkit.cli.latexdriver, 45
pwkit.cli.multitool, 74
pwkit.cli.wrapout, 45
pwkit.colormaps, 47
pwkit.contours, 48
pwkit.data_gui_helpers, 48
pwkit.ellipses, 26
pwkit.environments, 77
pwkit.environments.casa, 63
pwkit.environments.casa.dftphotom, 63
pwkit.environments.casa.scripting, 63
pwkit.environments.casa.spwglue, 64
pwkit.environments.casa.tasks, 64
pwkit.environments.casa.util, 65
pwkit.environments.heasoft, 65
pwkit.environments.sas, 66
pwkit.environments.sas.data, 67
pwkit.immodel, 29
pwkit.inifile, 55
pwkit.io, 7
pwkit.kbn_conf, 30
pwkit.kwargv, 71
pwkit.latex, 56
pwkit.lmmin, 30
pwkit.lsqmdl, 32
pwkit.method_decorator, 78
pwkit.msmt, 33
pwkit.ndshow_gtk2, 49
pwkit.ndshow_gtk3, 50
pwkit.numutil, 14
pwkit.parallel, 17

pwkit.pdm, 36
pwkit.phoenix, 38
pwkit.radio_cal_models, 39
pwkit.simpleenum, 18
pwkit.slurp, 53
pwkit.synphot, 39
pwkit.tabfile, 59
pwkit.tinifile, 60
pwkit.ucd_physics, 42
pwkit.unicode_to_latex, 61

81

pwkit, Release 0.6.99

82 Python Module Index

Index

Symbols
__contains__() (pwkit.Holder method), 5
__iter__() (pwkit.Holder method), 5
__repr__() (pwkit.Holder method), 5
__str__() (pwkit.Holder method), 5
__unicode__() (pwkit.Holder method), 5

A
A2R (in module pwkit.astutil), 21
abcd2() (in module pwkit.ellipses), 29
abcell() (in module pwkit.ellipses), 29
absolute() (pwkit.io.Path method), 9
addcol() (pwkit.latex.TableBuilder method), 58
addhcline() (pwkit.latex.TableBuilder method), 58
AlignedNumberFormatter (class in pwkit.latex), 57
analytic_2d() (in module pwkit.contours), 48
anchor (pwkit.io.Path attribute), 13
angcen() (in module pwkit.astutil), 22
argv (pwkit.slurp.Slurper attribute), 55
as_hdf_store() (pwkit.io.Path method), 9
as_nonlinear() (pwkit.lsqmdl.PolynomialModel method),

33
as_uri() (pwkit.io.Path method), 9
AstroImage (class in pwkit.astimage), 23
AstrometryInfo (class in pwkit.astutil), 23

B
Bandpass (class in pwkit.synphot), 40
bands() (pwkit.synphot.Registry method), 41
basic() (in module pwkit.kwargv), 74
BasicFormatter (class in pwkit.latex), 57
bcj_from_spt() (in module pwkit.ucd_physics), 42
bck_from_spt() (in module pwkit.ucd_physics), 42
bin_bblock() (in module pwkit.bblocks), 25
binary_type (in module pwkit), 6
bivabc() (in module pwkit.ellipses), 27
bivell() (in module pwkit.ellipses), 26
bivnorm() (in module pwkit.ellipses), 27
bivrandom() (in module pwkit.ellipses), 27
BoolFormatter (class in pwkit.latex), 57

broadcastize() (in module pwkit.numutil), 14
bs_tt_bblock() (in module pwkit.bblocks), 25

C
calc_pivot_wavelength() (pwkit.synphot.Bandpass

method), 40
cas_a() (in module pwkit.radio_cal_models), 39
CasapyScript (class in

pwkit.environments.casa.scripting), 63
check_usage() (in module pwkit.cli), 69
chmod() (pwkit.io.Path method), 9
clscale() (in module pwkit.ellipses), 26
colinfo() (pwkit.latex.BasicFormatter method), 57
Command (class in pwkit.cli.multitool), 75
commandline() (pwkit.cli.multitool.Multitool method),

76
copy() (pwkit.Holder method), 6
cwd (pwkit.slurp.Slurper attribute), 55
cwd() (pwkit.io.Path static method), 13

D
D2R (in module pwkit.astutil), 21
data_frame_to_astropy_table() (in module

pwkit.numutil), 16
data_to_argb32() (in module pwkit.data_gui_helpers), 49
databiv() (in module pwkit.ellipses), 27
default (pwkit.kwargv.KeywordInfo attribute), 73
DelegatingCommand (class in pwkit.cli.multitool), 75
dfsmooth() (in module pwkit.numutil), 16
die() (in module pwkit.cli), 70
djoin() (in module pwkit.io), 14
drive (pwkit.io.Path attribute), 13

E
ellabc() (in module pwkit.ellipses), 29
ellbiv() (in module pwkit.ellipses), 28
elld2() (in module pwkit.ellipses), 28
ellplot() (in module pwkit.ellipses), 29
ellpoint() (in module pwkit.ellipses), 28
encoding (pwkit.slurp.Slurper attribute), 55

83

pwkit, Release 0.6.99

ensure_dir() (in module pwkit.io), 14
ensure_parent() (pwkit.io.Path method), 9
ensure_symlink() (in module pwkit.io), 14
enumeration() (in module pwkit.simpleenum), 19
env (pwkit.slurp.Slurper attribute), 55
errinfo() (in module pwkit.msmt), 35
executable (pwkit.slurp.Slurper attribute), 55
exists() (pwkit.io.Path method), 9
expand() (pwkit.io.Path method), 9

F
F2S (in module pwkit.astutil), 22
fill_from_simbad() (pwkit.astutil.AstrometryInfo

method), 23
find_gamma_params() (in module pwkit.msmt), 36
fits_recarray_to_data_frame() (in module pwkit.numutil),

16
FITSImage (class in pwkit.astimage), 24
fixupfunc (pwkit.kwargv.KeywordInfo attribute), 73
fmtdeglat() (in module pwkit.astutil), 22
fmtdeglon() (in module pwkit.astutil), 22
fmthours() (in module pwkit.astutil), 22
fmtinfo() (in module pwkit.msmt), 36
fmtradec() (in module pwkit.astutil), 22
from_pcount() (pwkit.msmt.Uval static method), 35

G
gaussian_convolve() (in module pwkit.astutil), 23
gaussian_deconvolve() (in module pwkit.astutil), 23
get() (pwkit.Holder method), 6
get_2mass_epoch() (in module pwkit.astutil), 23
get_simbad_astrometry_info() (in module pwkit.astutil),

23
get_std_registry() (in module pwkit.synphot), 41
glob() (pwkit.io.Path method), 9

H
H2R (in module pwkit.astutil), 21
halfmax_points() (pwkit.synphot.Bandpass method), 41
halfpi (in module pwkit.astutil), 21
has() (pwkit.Holder method), 6
Holder (class in pwkit), 5
Holder() (in module pwkit), 6

I
imin (pwkit.pdm.PDMResult attribute), 37
init_cas_a() (in module pwkit.radio_cal_models), 39
invoke() (pwkit.cli.multitool.Command method), 75
invoke_command() (pwkit.cli.multitool.DelegatingCommand

method), 76
invoke_tool() (in module pwkit.cli.multitool), 75
invoke_with_usage() (pwkit.cli.multitool.Command

method), 75

is_absolute() (pwkit.io.Path method), 9
is_block_device() (pwkit.io.Path method), 9
is_char_device() (pwkit.io.Path method), 9
is_dir() (pwkit.io.Path method), 9
is_fifo() (pwkit.io.Path method), 9
is_file() (pwkit.io.Path method), 9
is_socket() (pwkit.io.Path method), 10
is_symlink() (pwkit.io.Path method), 10
iterdir() (pwkit.io.Path method), 10

J
J2000 (in module pwkit.astutil), 22
joinpath() (pwkit.io.Path method), 10
jy_to_flam() (pwkit.synphot.Bandpass method), 41

K
kbn_conf() (in module pwkit.kbn_conf), 30
KeywordInfo (class in pwkit.kwargv), 73
KwargvError, 73

L
latexify() (in module pwkit.latex), 59
latexify_l3col() (in module pwkit.latex), 59
latexify_n2col() (in module pwkit.latex), 59
latexify_u3col() (in module pwkit.latex), 59
liminfo() (in module pwkit.msmt), 36
LimitFormatter (class in pwkit.latex), 57
limtype() (in module pwkit.msmt), 36
limtype() (pwkit.msmt.Textual method), 34
linebreak (pwkit.slurp.Slurper attribute), 55
listobs() (in module pwkit.environments.casa.tasks), 64
load_bcah98_mass_radius() (in module

pwkit.ucd_physics), 42
load_spectrum() (in module pwkit.phoenix), 38
Lval (class in pwkit.msmt), 34

M
mag_to_flam() (pwkit.synphot.Bandpass method), 41
mag_to_fnu() (pwkit.synphot.Bandpass method), 41
make_parallel_helper() (in module pwkit.parallel), 17
make_path_func() (in module pwkit.io), 14
make_relative() (pwkit.io.Path method), 10
make_step_lcont() (in module pwkit.numutil), 17
make_step_rcont() (in module pwkit.numutil), 17
make_tophat_ee() (in module pwkit.numutil), 17
make_tophat_ei() (in module pwkit.numutil), 17
make_tophat_ie() (in module pwkit.numutil), 17
make_tophat_ii() (in module pwkit.numutil), 17
mass_from_j() (in module pwkit.ucd_physics), 42
match() (pwkit.io.Path method), 10
maxvals (pwkit.kwargv.KeywordInfo attribute), 73
MaybeNumberFormatter (class in pwkit.latex), 57
mc_pmins (pwkit.pdm.PDMResult attribute), 37

84 Index

pwkit, Release 0.6.99

mc_puncert (pwkit.pdm.PDMResult attribute), 37
mc_pvalue (pwkit.pdm.PDMResult attribute), 37
mc_tmins (pwkit.pdm.PDMResult attribute), 37
minvals (pwkit.kwargv.KeywordInfo attribute), 73
MIRIADImage (class in pwkit.astimage), 24
mk_radius_from_mass_bcah98() (in module

pwkit.ucd_physics), 43
mkdir() (pwkit.io.Path method), 10
Multitool (class in pwkit.cli.multitool), 76
mutate_stream() (in module pwkit.inifile), 56

N
name (pwkit.io.Path attribute), 13

O
open() (pwkit.io.Path method), 10
orientcen() (in module pwkit.astutil), 22

P
p_side() (pwkit.lmmin.Problem method), 32
page_data_frame() (in module pwkit.numutil), 16
parallel_newton() (in module pwkit.numutil), 16
parallel_quad() (in module pwkit.numutil), 16
parang() (in module pwkit.astutil), 22
parent (pwkit.io.Path attribute), 13
parents (pwkit.io.Path attribute), 13
parse() (pwkit.kwargv.ParseKeywords method), 74
parse_or_die() (pwkit.kwargv.ParseKeywords method),

74
parsedeglat() (in module pwkit.astutil), 22
parsedeglon() (in module pwkit.astutil), 22
ParseError, 73
parsehours() (in module pwkit.astutil), 22
ParseKeywords (class in pwkit.kwargv), 73
parser (pwkit.kwargv.KeywordInfo attribute), 73
parts (pwkit.io.Path attribute), 13
Path (class in pwkit.io), 7
pathlines() (in module pwkit.io), 14
pathwords() (in module pwkit.io), 13
pdm() (in module pwkit.pdm), 37
PDMResult (class in pwkit.pdm), 37
pi (in module pwkit.astutil), 21
pivot_wavelength() (pwkit.synphot.Bandpass method),

41
pmin (pwkit.pdm.PDMResult attribute), 37
PolynomialModel (class in pwkit.lsqmdl), 33
pop_option() (in module pwkit.cli), 70
populate() (pwkit.cli.multitool.DelegatingCommand

method), 76
predict() (pwkit.astutil.AstrometryInfo method), 23
prepend_environ_path() (in module pwkit.environments),

77
prepend_path() (in module pwkit.environments), 77

prin_prediction() (pwkit.astutil.AstrometryInfo method),
23

print_tracebacks (class in pwkit.cli), 70
printexc (pwkit.kwargv.KeywordInfo attribute), 73
Problem (class in pwkit.lmmin), 31
proc (pwkit.slurp.Slurper attribute), 55
Progress (class in pwkit.environments.casa.spwglue), 64
propagate_signals (pwkit.slurp.Slurper attribute), 55
pwkit (module), 5
pwkit.astimage (module), 23
pwkit.astutil (module), 21
pwkit.bblocks (module), 24
pwkit.cgs (module), 25
pwkit.cli (module), 69
pwkit.cli.astrotool (module), 45
pwkit.cli.imtool (module), 45
pwkit.cli.latexdriver (module), 45
pwkit.cli.multitool (module), 74
pwkit.cli.wrapout (module), 45
pwkit.colormaps (module), 47
pwkit.contours (module), 48
pwkit.data_gui_helpers (module), 48
pwkit.ellipses (module), 26
pwkit.environments (module), 77
pwkit.environments.casa (module), 63
pwkit.environments.casa.dftphotom (module), 63
pwkit.environments.casa.scripting (module), 63
pwkit.environments.casa.spwglue (module), 64
pwkit.environments.casa.tasks (module), 64
pwkit.environments.casa.util (module), 65
pwkit.environments.heasoft (module), 65
pwkit.environments.sas (module), 66
pwkit.environments.sas.data (module), 67
pwkit.immodel (module), 29
pwkit.inifile (module), 55
pwkit.io (module), 7
pwkit.kbn_conf (module), 30
pwkit.kwargv (module), 71
pwkit.latex (module), 56
pwkit.lmmin (module), 30
pwkit.lsqmdl (module), 32
pwkit.method_decorator (module), 78
pwkit.msmt (module), 33
pwkit.ndshow_gtk2 (module), 49
pwkit.ndshow_gtk3 (module), 50
pwkit.numutil (module), 14
pwkit.parallel (module), 17
pwkit.pdm (module), 36
pwkit.phoenix (module), 38
pwkit.radio_cal_models (module), 39
pwkit.simpleenum (module), 18
pwkit.slurp (module), 53
pwkit.synphot (module), 39
pwkit.tabfile (module), 59

Index 85

pwkit, Release 0.6.99

pwkit.tinifile (module), 60
pwkit.ucd_physics (module), 42
pwkit.unicode_to_latex (module), 61
PyrapImage (class in pwkit.astimage), 24

R
R2A (in module pwkit.astutil), 21
R2D (in module pwkit.astutil), 21
R2H (in module pwkit.astutil), 21
read() (in module pwkit.tabfile), 59
read_fits() (pwkit.io.Path method), 10
read_fits_bintable() (pwkit.io.Path method), 10
read_hdf() (pwkit.io.Path method), 11
read_inifile() (pwkit.io.Path method), 11
read_lines() (pwkit.io.Path method), 10
read_numpy_text() (pwkit.io.Path method), 11
read_pandas() (pwkit.io.Path method), 11
read_pickle() (pwkit.io.Path method), 11
read_pickles() (pwkit.io.Path method), 11
read_stream() (in module pwkit.inifile), 56
read_tabfile() (pwkit.io.Path method), 11
Redirection (in module pwkit.slurp), 54
reduce_data_frame() (in module pwkit.numutil), 15
reduce_data_frame_evenly_with_gaps() (in module

pwkit.numutil), 15
Referencer (class in pwkit.latex), 57
register() (pwkit.cli.multitool.DelegatingCommand

method), 76
Registry (class in pwkit.synphot), 41
relative_to() (pwkit.io.Path method), 12
rellink() (in module pwkit.io), 14
rellink_to() (pwkit.io.Path method), 12
rename() (pwkit.io.Path method), 12
repeatable (pwkit.kwargv.KeywordInfo attribute), 73
repval() (in module pwkit.msmt), 36
repval() (pwkit.msmt.Textual method), 35
repvals() (pwkit.msmt.Uval method), 35
required (pwkit.kwargv.KeywordInfo attribute), 73
resolve() (pwkit.io.Path method), 12
rglob() (pwkit.io.Path method), 12
rmdir() (pwkit.io.Path method), 12
rms() (in module pwkit.numutil), 15
rmtree() (pwkit.io.Path method), 12

S
S2F (in module pwkit.astutil), 22
sample_double_norm() (in module pwkit.msmt), 36
sample_gamma() (in module pwkit.msmt), 36
sanitize_unicode() (in module

pwkit.environments.casa.util), 65
scale (pwkit.kwargv.KeywordInfo attribute), 73
ScaleModel (class in pwkit.lsqmdl), 33
scandir() (pwkit.io.Path method), 12
sep (pwkit.kwargv.KeywordInfo attribute), 73

set() (pwkit.Holder method), 6
set_one() (pwkit.Holder method), 6
show_usage() (in module pwkit.cli), 70
sigmascale() (in module pwkit.ellipses), 26
SimpleImage (class in pwkit.astimage), 24
slice_around_gaps() (in module pwkit.numutil), 15
slice_evenly_with_gaps() (in module pwkit.numutil), 15
Slurper (class in pwkit.slurp), 54
Solution (class in pwkit.lmmin), 32
sphbear() (in module pwkit.astutil), 22
sphdist() (in module pwkit.astutil), 22
sphofs() (in module pwkit.astutil), 22
stat() (pwkit.io.Path method), 12
stderr (pwkit.slurp.Slurper attribute), 55
stdin (pwkit.slurp.Slurper attribute), 55
stdout (pwkit.slurp.Slurper attribute), 55
stem (pwkit.io.Path attribute), 13
Stretcher (class in pwkit.data_gui_helpers), 49
subimage() (pwkit.astimage.AstroImage method), 24
suffix (pwkit.io.Path attribute), 13
suffixes (pwkit.io.Path attribute), 13
symlink_to() (pwkit.io.Path method), 12
synphot() (pwkit.synphot.Bandpass method), 41

T
TableBuilder (class in pwkit.latex), 57
tauc_from_mass() (in module pwkit.ucd_physics), 43
telescopes() (pwkit.synphot.Registry method), 41
text_pieces() (pwkit.msmt.Uval method), 35
text_type (in module pwkit), 6
Textual (class in pwkit.msmt), 34
thetas (pwkit.pdm.PDMResult attribute), 37
timeout (pwkit.slurp.Slurper attribute), 55
to_dict() (pwkit.Holder method), 6
to_pretty() (pwkit.Holder method), 6
touch() (pwkit.io.Path method), 12
try_open() (in module pwkit.io), 13
try_open() (pwkit.io.Path method), 12
try_unlink() (pwkit.io.Path method), 12
tt_bblock() (in module pwkit.bblocks), 25
twopi (in module pwkit.astutil), 21

U
uiname (pwkit.kwargv.KeywordInfo attribute), 73
UncertFormatter (class in pwkit.latex), 59
unicode_stdio() (in module pwkit.cli), 70
unicode_to_str() (in module pwkit), 6
unit_tophat_ee() (in module pwkit.numutil), 16
unit_tophat_ei() (in module pwkit.numutil), 16
unit_tophat_ie() (in module pwkit.numutil), 16
unit_tophat_ii() (in module pwkit.numutil), 17
unlink() (pwkit.io.Path method), 12
unwrap() (in module pwkit.msmt), 36
UQUANT_UNCERT (in module pwkit.msmt), 36

86 Index

pwkit, Release 0.6.99

UsageError, 76
usmooth() (in module pwkit.numutil), 16
Uval (class in pwkit.msmt), 35
uval_dtype (in module pwkit.msmt), 36

V
verify() (pwkit.astutil.AstrometryInfo method), 23
vizread() (in module pwkit.tabfile), 60

W
weighted_mean() (in module pwkit.numutil), 15
weighted_mean_df() (in module pwkit.numutil), 15
weighted_variance() (in module pwkit.numutil), 15
WideHeader (class in pwkit.latex), 59
with_name() (pwkit.io.Path method), 13
with_suffix() (pwkit.io.Path method), 13
words() (in module pwkit.io), 13
write() (in module pwkit.inifile), 56
write() (in module pwkit.tabfile), 60
write_pickle() (pwkit.io.Path method), 13
write_pickles() (pwkit.io.Path method), 13
write_stream() (in module pwkit.inifile), 56
write_stream() (in module pwkit.tinifile), 61
wrong_usage() (in module pwkit.cli), 71

Index 87

	About the Software
	Installation
	Authors
	Copyright and License

	Foundations
	Core utilities (pwkit)
	Convenient file input and output (pwkit.io)
	Numerical utilities (pwkit.numutil)
	Framework for easy parallelized processing (pwkit.parallel)
	Quick enumerations of constant values (pwkit.simpleenum)

	Scientific Algorithms
	Basic astronomical calculations (pwkit.astutil)
	File-format-agnostic loading of astronomical images (pwkit.astimage)
	The Bayesian Blocks algorithm (pwkit.bblocks)
	Constants in CGS units (pwkit.cgs)
	Representations of and computations with ellipses (pwkit.ellipses)
	Modeling sources in images (pwkit.immodel)
	Bayesian confidence intervals for count rates (pwkit.kbn_conf)
	Nonlinear least-squares minimization with Levenberg-Marquardt (pwkit.lmmin)
	Fitting generic models with least-squares minimization (pwkit.lsqmdl)
	Math with uncertain and censored measurements (pwkit.msmt)
	Period-finding with Phase Dispersion Minimization (pwkit.pdm)
	Loading the outputs of PHOENIX atmospheric models (pwkit.phoenix)
	Flux density models of radio calibrators (pwkit.radio_cal_models)
	Synthetic photometry (pwkit.synphot)
	Scaling relations for physical properties of ultra-cool dwarfs (pwkit.ucd_physics)

	Command-line tools
	Quick astronomical calculations (astrotool)
	Quick operations on astronomical images (pwkit.cli.imtool)
	Single-command compilation of LaTeX documents (latexdriver)
	Wrap the output of a sub-program with extra information (wrapout)

	Data Visualization
	Mapping arbitrary data to color scales (pwkit.colormaps)
	Tracing contours (pwkit.contours)
	Utilities for data visualization (pwkit.data_gui_helpers)
	Easy visualization of matrices with GTK+ version 2 (pwkit.ndshow_gtk2)
	Easy visualization of matrices with GTK+ version 3 (pwkit.ndshow_gtk3)

	Data input and output
	Streaming output from other programs (pwkit.slurp)
	A simple “ini” file format (pwkit.inifile)
	Outputting data in LaTeX format (pwkit.latex)
	Reading and writing data tables with types and uncertainties (pwkit.tabfile)
	An “ini” file format with typed, uncertain data (pwkit.tinifile)
	Converting Unicode to LaTeX notation (pwkit.unicode_to_latex)

	External Software Environments
	CASA (pwkit.environments.casa)
	Compact-source photometry with discrete Fourier transformations (pwkit.environments.casa.dftphotom)
	Structured scripting within casapy (pwkit.environments.casa.scripting)
	Merging spectral windows in visibility data (pwkit.environments.casa.spwglue)
	Quick access to basic CASA tasks (pwkit.environments.casa.tasks)
	Utilities for Python invocation of CASA tools (pwkit.environments.casa.util)
	HEASoft (pwkit.environments.heasoft)
	SAS (pwkit.environments.sas)
	SAS (pwkit.environments.sas.data)

	Tools for writing command-line programs
	Utilities for command-line programs (pwkit.cli)
	Parsing keyword-style program arguments (pwkit.kwargv)
	Command-line programs with sub-commands (pwkit.cli.multitool)

	Behind-the-scenes infrastructure
	Interfacing with other software environments (pwkit.environments)
	Helper for decorators on class methods (pwkit.method_decorator)

	Indices and tables
	Python Module Index

