

pwkit

This documentation has a lot of stubs.

	About the Software
	Installation

	Citation

	Authors

	Copyright and License

	Foundations
	Core utilities (pwkit)

	Convenient file input and output (pwkit.io)

	Numerical utilities (pwkit.numutil)

	Framework for easy parallelized processing (pwkit.parallel)

	Quick enumerations of constant values (pwkit.simpleenum)

	Scientific Algorithms
	Basic astronomical calculations (pwkit.astutil)

	File-format-agnostic loading of astronomical images (pwkit.astimage)

	The Bayesian Blocks algorithm (pwkit.bblocks)

	Constants in CGS units (pwkit.cgs)

	Simple synchrotron radiation emission coefficients (pwkit.dulk_models)

	Representations of and computations with ellipses (pwkit.ellipses)

	Run the Fleischman & Kuznetsov (2010) synchrotron code (pwkit.fk10)

	Modeling sources in images (pwkit.immodel)

	Bayesian confidence intervals for count rates (pwkit.kbn_conf)

	Nonlinear least-squares minimization with Levenberg-Marquardt (pwkit.lmmin)

	Fitting generic models with least-squares minimization (pwkit.lsqmdl)

	Math with uncertain and censored measurements (pwkit.msmt)

	Period-finding with Phase Dispersion Minimization (pwkit.pdm)

	Loading the outputs of PHOENIX atmospheric models (pwkit.phoenix)

	Flux density models of radio calibrators (pwkit.radio_cal_models)

	Helpers for X-ray spectral modeling with the Sherpa packge (pwkit.sherpa)

	Synthetic photometry (pwkit.synphot)

	Scaling relations for physical properties of ultra-cool dwarfs (pwkit.ucd_physics)

	Command-line tools
	Quick astronomical calculations (astrotool)

	Quick operations on astronomical images (pwkit.cli.imtool)

	Single-command compilation of LaTeX documents (latexdriver)

	Wrap the output of a sub-program with extra information (wrapout)

	Data Visualization
	Mapping arbitrary data to color scales (pwkit.colormaps)

	Tracing contours (pwkit.contours)

	Utilities for data visualization (pwkit.data_gui_helpers)

	Easy visualization of matrices with GTK+ version 2 (pwkit.ndshow_gtk2)

	Easy visualization of matrices with GTK+ version 3 (pwkit.ndshow_gtk3)

	Data input and output
	Streaming output from other programs (pwkit.slurp)

	A simple “ini” file format (pwkit.inifile)

	Outputting data in LaTeX format (pwkit.latex)

	Reading and writing data tables with types and uncertainties (pwkit.tabfile)

	An “ini” file format with typed, uncertain data (pwkit.tinifile)

	Converting Unicode to LaTeX notation (pwkit.unicode_to_latex)

	External Software Environments
	CASA (pwkit.environments.casa)

	HEASoft (pwkit.environments.heasoft)

	SAS (pwkit.environments.sas)

	CIAO (pwkit.environments.ciao)

	Tools for writing command-line programs
	Utilities for command-line programs (pwkit.cli)

	Parsing keyword-style program arguments (pwkit.kwargv)

	Command-line programs with sub-commands (pwkit.cli.multitool)

	Behind-the-scenes infrastructure
	Interfacing with other software environments (pwkit.environments)

	Helper for decorators on class methods (pwkit.method_decorator)

Indices and tables

	Index

	Module Index

	Search Page

About the Software

pwkit is a collection of Peter Williams’ miscellaneous Python tools. I’m
packaging them so that other people can install them off of PyPI or Conda and
run my code without having to go to too much work. That’s the hope, at least.

Installation

The most recent stable version of pwkit is available on the Python
package index [https://pypi.python.org/pypi/pwkit/], so you should be able to install this package simply by
running pip install pwkit. The package is also available in the conda [http://conda.pydata.org/docs/]
package manager by installing it from anaconda.org [https://anaconda.org/pkgw/pwkit]. If you are using
packages from the conda-forge [http://conda-forge.github.io/] project, install with conda install -c
pkgw-forge pwkit. Otherwise, use conda install -c pkgw pwkit.

If you want to download the source code and install pwkit manually, the
package uses the standard Python setuptools [https://pypi.python.org/pypi/setuptools], so running python setup.py
install will do the trick.

Some pwkit functionality requires additional Python modules such as
scipy [http://www.scipy.org/]; these issues should be very obvious as they manifest as
ImportErrors triggered for the relevant modules. Bare minimum
functionality requires:

	numpy [http://www.numpy.org/] >= 1.6

	six [https://pythonhosted.org/six/] >= 1.9

	on Python 2.x only, pathlib [https://pypi.python.org/pypi/pathlib/] >= 1.0

If you install pwkit through standard means, these modules should be
automatically installed too if they weren’t already available.

Citation

If you use pwkit in academic work, you should identify that you have done so
and specify the version used. While pwkit does not (yet?) have an accompanying
formal publication, in journals like ApJ [http://iopscience.iop.org/journal/0004-637X] you can “cite” the code directly via its
record [https://ui.adsabs.harvard.edu/#abs/2017ascl.soft04001W/abstract] in the NASA Astrophysics Data System [https://ui.adsabs.harvard.edu/], which has identifier
2017ascl.soft04001W [https://ui.adsabs.harvard.edu/#abs/2017ascl.soft04001W/abstract]. This corresponds to record ascl:1704.001 [http://ascl.net/1704.001] in in the
Astrophysics Source Code Library [http://ascl.net/]. By clicking on this link [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2017ascl.soft04001W&data_type=BIBTEX] you can
get the ADS-recommended BibTeX record for the reference.

If you are using aastex [http://journals.aas.org/authors/aastex.html] version 6 or higher, the appropriate code to
include after your Acknowledgments section would be:

\software{..., pwkit \citep{2017ascl.soft04001W}, ...}

Authors

pwkit is authored by Peter K. G. Williams and collaborators. Despite this
package being named after me, contributions are welcome and will be given full
credit. I just don’t want to have to make up a decent name for this package
right now.

Contributions have come from (alphabetically by surname):

	Maïca Clavel

	Elisabeth Newton

	Denis Ryzhkov (I copied method_decorator [https://github.com/denis-ryzhkov/method_decorator/])

Copyright and License

The pwkit package is copyright Peter K. G. Williams and collaborators and
licensed under the MIT license [http://opensource.org/licenses/MIT], which is reproduced in the file LICENSE in
the source tree.

Foundations

This documentation has a lot of stubs.

	Core utilities (pwkit)
	The Holder namespace object

	Utilities for exceptions

	Abstractions between Python versions 2 and 3

	Convenient file input and output (pwkit.io)
	The Path object

	Functions helping with Unicode safety

	Other functions in pwkit.io

	Numerical utilities (pwkit.numutil)
	Making functions that auto-broadcast their arguments

	Convenience functions for statistics

	Convenience functions for pandas.DataFrame objects

	Parallelized versions of simple math algorithms

	Tophat and step functions

	Framework for easy parallelized processing (pwkit.parallel)
	Main Interface

	Implementation Details

	Quick enumerations of constant values (pwkit.simpleenum)

Core utilities (pwkit)

A toolkit for science and astronomy in Python.

The toplevel pwkit module includes a few basic abstractions that show
up throughout the rest of the codebase. These include:

	The Holder namespace object

	Utilities for exceptions

	Abstractions between Python versions 2 and 3

The Holder namespace object

Holder is a “namespace object” that primarily exists so that you can
fill it with named attributes however you want. It’s essentially like a plain
dict [https://docs.python.org/3/library/stdtypes.html#dict], but you can write the convenient form myholder.xcoord
instead of mydict['xcoord']. It has useful methods like
set() and to_pretty() also.

	
class pwkit.Holder(_Holder__decorating=None, **kwargs)

	Create a new Holder. Any keyword arguments will be assigned as
properties on the object itself, for instance, o = Holder(foo=1)
yields an object such that o.foo is 1.

The __decorating keyword is used to implement the Holder
decorator functionality, described below.

	get(name[, defval])

	Get an attribute on this Holder.

	set(**kwargs)

	For each keyword argument, sets an attribute on this Holder to its value.

	set_one(name, value)

	Set a single attribute on this object.

	has(name)

	Return whether the named attribute has been set on this object.

	copy()

	Return a shallow copy of this object.

	to_dict()

	Return a copy of this object converted to a dict [https://docs.python.org/3/library/stdtypes.html#dict].

	to_pretty([format])

	Return a string with a prettified version of this object’s contents.

Iterating over a Holder yields its contents in the form of a
sequence of (name, value) tuples. The stringification of a
Holder returns its representation in a dict-like format.
Holder objects implement __contains__ so that boolean tests
such as "myprop" in myholder act sensibly.

	
get(name, defval=None)

	Get an attribute on this Holder.

Equivalent to getattr(self, name, defval).

	
set(**kwargs)

	For each keyword argument, sets an attribute on this Holder to its
value.

Equivalent to:

for key, value in kwargs.iteritems():
 setattr(self, key, value)

Returns self.

	
set_one(name, value)

	Set a single attribute on this object.

Equivalent to setattr(self, name, value). Returns self.

	
has(name)

	Return whether the named attribute has been set on this object.

This can more naturally be expressed by writing name in self.

	
copy()

	Return a shallow copy of this object.

	
to_dict()

	Return a copy of this object converted to a dict [https://docs.python.org/3/library/stdtypes.html#dict].

	
to_pretty(format='str')

	Return a string with a prettified version of this object’s contents.

The format is a multiline string where each line is of the form key
= value. If the format argument is equal to "str", each
value is the stringification of the value; if it is "repr", it
is its repr() [https://docs.python.org/3/library/functions.html#repr].

Calling str() on a Holder returns a slightly different
pretty stringification that uses a textual representation similar to a
Python dict [https://docs.python.org/3/library/stdtypes.html#dict] literal.

	
@pwkit.Holder

	The Holder class may also be used as a decorator on a class
definition to transform its contents into a Holder instance. Writing:

@Holder
class mydata ():
 a = 1
 b = 'hello'

creates a Holder instance named mydata containing names a and
b. This can be a convenient way to populate one-off data structures.

Utilities for exceptions

	
class pwkit.PKError(fmt, *args)

	A generic base class for exceptions.

All custom exceptions raised by pwkit modules should be subclasses
of this class.

The constructor automatically applies old-fashioned printf-like
(%-based) string formatting if more than one argument is given:

PKError('my format string says %r, %d', myobj, 12345)
has text content equal to:
'my format string says %r, %d' % (myobj, 12345)

If only a single argument is given, the exception text is its
stringification without applying printf-style formatting.

	
pwkit.reraise_context(fmt, *args)

	Reraise an exception with its message modified to specify additional
context.

This function tries to help provide context when a piece of code
encounters an exception while trying to get something done, and it wishes
to propagate contextual information farther up the call stack. It only
makes sense in Python 2, which does not provide Python 3’s exception
chaining [https://www.python.org/dev/peps/pep-3134/] functionality.
Instead of that more sophisticated infrastructure, this function just
modifies the textual message associated with the exception being raised.

If only a single argument is supplied, the exception text prepended with
the stringification of that argument. If multiple arguments are supplied,
the first argument is treated as an old-fashioned printf-type
(%-based) format string, and the remaining arguments are the formatted
values.

Example usage:

from pwkit import reraise_context
from pwkit.io import Path

filename = 'my-filename.txt'

try:
 f = Path(filename).open('rt')
 for line in f.readlines():
 # do stuff ...
except Exception as e:
 reraise_context('while reading "%r"', filename)
 # The exception is reraised and so control leaves this function.

If an exception with text "bad value" were to be raised inside the
try block in the above example, its text would be modified to read
"while reading "my-filename.txt": bad value".

Abstractions between Python versions 2 and 3

The toplevel pwkit module imports the following variables from the
six package that helps with Python 2/3 compatibility:

	binary_type

	text_type

	
pwkit.unicode_to_str(s)

	A function for implementing the __str__ method of classes, the meaning
of which differs between Python versions 2 and 3. In all cases, you should
implement __unicode__ on your classes. Setting the __str__ property
of a class to unicode_to_str() will cause it to Do The Right Thing™,
which means returning the UTF-8 encoded version of its Unicode expression
in Python 2, or returning the Unicode expression directly in Python 3:

import pwkit

class MyClass (object):
 def __unicode__ (self):
 return u'my value'

 __str__ = pwkit.unicode_to_str

Convenient file input and output (pwkit.io)

The pwkit package provides many tools to ease reading and writing data
files. The most generic such tools are located in this module. The most
important tool is the Path class for object-oriented navigation of
the filesystem.

The functionality in this module can be grouped into these categories:

	The Path object

	Functions helping with Unicode safety

	Other functions in pwkit.io (generally being superseded by Path)

The Path object

	
class pwkit.io.Path

	This is an extended version of the pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] class.
(pathlib [https://docs.python.org/3/library/pathlib.html#module-pathlib] is built into Python 3.x and is available as a backport to
Python 2.x.) It represents a path on the filesystem.

The methods and attributes on Path objects fall into several broad categories:

	Manipulating and dissecting paths

	Filesystem interrogation

	Filesystem modifications

	Data input and output

Constructors are:

	
Path(part, *more)

	Returns a new path equivalent to os.path.join (part, *more), except
the arguments may be either strings or other Path instances.

	
classmethod cwd()

	Returns a new path containing the absolute path of the current working
directory.

	
classmethod create_tempfile(want='handle', resolution='try_unlink', suffix='', **kwargs)

	Returns a context manager managing the creation and destruction of a
named temporary file. The operation of this function is exactly like
that of the bound method Path.make_tempfile(), except that instead
of creating a temporary file with a name similar to an existing path,
this function creates one with a name selected using the standard
OS-dependent methods for choosing names of temporary files.

The overwrite resolution is not allowed here since there is no
original path to overwrite.

Note that by default the returned context manager returns a file-like
object and not an actual Path instance; use want="path" to
get a Path.

Manipulating and dissecting paths

Child paths can be created by using the division operator, that is:

parent = Path ('directory')
child = parent / 'subdirectory'

Combining a relative path with an absolute path in this way will just yield the
absolute path:

>>> foo = Path ('relative') / Path ('/a/absolute')
>>> print (foo)
<<< /a/absolute

Paths should be converted to text by calling str() or unicode() on
them.

Instances of Path have the following attributes that help you create
new paths or break them into their components:

	anchor

	The concatenation of the drive and root, or ‘’.

	drive

	The drive prefix (letter or UNC path), if any.

	name

	The final path component, if any.

	parent

	The logical parent of the path.

	parents

	A sequence of this path’s logical parents.

	parts

	An object providing sequence-like access to the components in the filesystem path.

	stem

	The final path component, minus its last suffix.

	suffix

	The final component’s last suffix, if any.

	suffixes

	A list of the final component’s suffixes, if any.

And they have the following related methods:

	absolute()

	Return an absolute version of this path.

	as_uri()

	Return the path as a ‘file’ URI.

	expand([user, vars, glob, resolve])

	Return a new Path with various expansions performed.

	format(*args, **kwargs)

	Return a new path formed by calling str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] on the textualization of this path.

	get_parent([mode])

	Get the path of this path’s parent directory.

	is_absolute()

	True if the path is absolute (has both a root and, if applicable, a drive).

	joinpath(*args)

	Combine this path with one or several arguments, and return a new path representing either a subpath (if all arguments are relative paths) or a totally different path (if one of the arguments is anchored).

	make_relative(other)

	Return a new path that is the equivalent of this one relative to the path other.

	relative_to(*other)

	Return the relative path to another path identified by the passed arguments.

	resolve([strict])

	Make the path absolute, resolving all symlinks on the way and also normalizing it (for example turning slashes into backslashes under Windows).

	with_name(name)

	Return a new path with the file name changed.

	with_suffix(suffix)

	Return a new path with the file suffix changed.

Detailed descriptions of attributes

	
Path.anchor

	The concatenation of drive and root.

	
Path.drive

	The Windows or network drive of the path. The empty string on POSIX.

	
Path.name

	The final path component. The name of /foo/ is "foo". The name
of /foo/. is "foo" as well. The name of /foo/.. is "..".

	
Path.parent

	This path’s parent, in a textual sense: the parent of foo is .,
but the parent of . is also .. The parent of /bar is /; the
parent of / is also /.

See also

Path.get_parent()

	
Path.parents

	An immutable, indexable sequence of this path’s parents. Here are some
examples showing the semantics:

>>> list(Path("/foo/bar").parents)
<<< [Path("/foo"), Path("/")]
>>> list(Path("/foo/bar/").parents)
<<< [Path("/foo"), Path("/")]
>>> list(Path("/foo/bar/.").parents)
<<< [Path("/foo"), Path("/")]
>>> list(Path("/foo/./bar/.").parents)
<<< [Path("/foo"), Path("/")]
>>> list(Path("wib/wob").parents)
<<< [Path("wib"), Path(".")]
>>> list(Path("wib/../wob/.").parents)
<<< [Path("wib/.."), Path("wib"), Path(".")]

See also

Path.get_parent()

	
Path.parts

	A tuple of the path components. Examples:

>>> Path('/a/b').parts
<<< ('/', 'a', 'b')
>>> Path('a/b').parts
<<< ('a', 'b')
>>> Path('/a/b/').parts
<<< ('/', 'a', 'b')
>>> Path('a/b/.').parts
<<< ('a', 'b')
>>> Path('/a/../b/./c').parts
<<< ('/', 'a', '..', 'b', 'c')
>>> Path('.').parts
<<< ()
>>> Path('').parts
<<< ()

	
Path.stem

	The name without its suffix. The stem of "foo.tar.gz" is
"foo.tar". The stem of "noext" is "noext". It is an invariant
that name = stem + suffix.

	
Path.suffix

	The suffix of the name, including the period. If there is no
period, the empty string is returned:

>>> print (Path("foo.tar.gz").suffix)
<<< .gz
>>> print (Path("foo.dir/.").suffix)
<<< .dir
>>> print (repr (Path("noextension").suffix))
<<< ''

	
Path.suffixes

	A list of all suffixes on name, including the periods. The suffixes
of "foo.tar.gz" are [".tar", ".gz"]. If name contains no
periods, the empty list is returned.

Detailed descriptions of methods

	
Path.absolute()

	Return an absolute version of the path. Unlike resolve(),
does not normalize the path or resolve symlinks.

	
Path.as_uri()

	Return the path stringified as a file:/// URI.

	
Path.expand(user=False, vars=False, glob=False, resolve=False)

	Return a new Path with various expansions performed. All
expansions are disabled by default but can be enabled by passing in
true values in the keyword arguments.

	userbool (default False)

	Expand ~ and ~user home-directory constructs. If a username is
unmatched or $HOME is unset, no change is made. Calls
os.path.expanduser() [https://docs.python.org/3/library/os.path.html#os.path.expanduser].

	varsbool (default False)

	Expand $var and ${var} environment variable constructs. Unknown
variables are not substituted. Calls os.path.expandvars() [https://docs.python.org/3/library/os.path.html#os.path.expandvars].

	globbool (default False)

	Evaluate the path as a glob [https://docs.python.org/3/library/glob.html#module-glob] expression and use the matched path.
If the glob does not match anything, do not change anything. If the
glob matches more than one path, raise an IOError [https://docs.python.org/3/library/exceptions.html#IOError].

	resolvebool (default False)

	Call resolve() on the return value before returning it.

	
Path.format(*args, **kwargs)

	Return a new path formed by calling str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] on the
textualization of this path.

	
Path.get_parent(mode='naive')

	Get the path of this path’s parent directory.

Unlike the parent attribute, this function can correctly
ascend into parent directories if self is "." or a sequence of
"..". The precise way in which it handles these kinds of paths,
however, depends on the mode parameter:

	"textual"

	Return the same thing as the parent attribute.

	"resolved"

	As textual, but on the resolve()-d version of the path. This
will always return the physical parent directory in the filesystem.
The path pointed to by self must exist for this call to succeed.

	"naive"

	As textual, but the parent of "." is "..", and the parent of
a sequence of ".." is the same sequence with another "..". Note
that this manipulation is still strictly textual, so results when called
on paths like "foo/../bar/../other" will likely not be what you want.
Furthermore, p.get_parent(mode="naive") never yields a path equal to
p, so some kinds of loops will execute infinitely.

	
Path.is_absolute()

	Returns whether the path is absolute.

	
Path.joinpath(*args)

	Combine this path with several new components. If one of the
arguments is absolute, all previous components are discarded.

	
Path.make_relative(other)

	Return a new path that is the equivalent of this one relative to the path
other. Unlike relative_to(), this will not throw an error if self is
not a sub-path of other; instead, it will use .. to build a relative
path. This can result in invalid relative paths if other contains a
directory symbolic link.

If self is an absolute path, it is returned unmodified.

	
Path.relative_to(*other)

	Return this path as made relative to another path identified by
other. If this is not possible, raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	
Path.resolve()

	Make this path absolute, resolving all symlinks and normalizing away
".." and "." components. The path must exist for this function to
work.

	
Path.with_name(name)

	Return a new path with the file name changed.

	
Path.with_suffix(suffix)

	Return a new path with the file suffix changed, or a new suffix
added if there was none before. suffix must start with a ".". The
semantics of the suffix attribute are maintained, so:

>>> print (Path ('foo.tar.gz').with_suffix ('.new'))
<<< foo.tar.new

Filesystem interrogation

These methods probe the actual filesystem to test whether the given path, for
example, is a directory; but they do not modify the filesystem.

	exists()

	Whether this path exists.

	glob(pattern)

	Iterate over this subtree and yield all existing files (of any kind, including directories) matching the given relative pattern.

	is_block_device()

	Whether this path is a block device.

	is_char_device()

	Whether this path is a character device.

	is_dir()

	Whether this path is a directory.

	is_fifo()

	Whether this path is a FIFO.

	is_file()

	Whether this path is a regular file (also True for symlinks pointing to regular files).

	is_socket()

	Whether this path is a socket.

	is_symlink()

	Whether this path is a symbolic link.

	iterdir()

	Iterate over the files in this directory.

	match(path_pattern)

	Return True if this path matches the given pattern.

	readlink()

	Assuming that this path is a symbolic link, read its contents and return them as another Path object.

	rglob(pattern)

	Recursively yield all existing files (of any kind, including directories) matching the given relative pattern, anywhere in this subtree.

	scandir()

	Iteratively scan this path, assuming it’s a directory.

	stat()

	Return the result of the stat() system call on this path, like os.stat() does.

Detailed descriptions

	
Path.exists()

	Returns whether the path exists.

	
Path.glob(pattern)

	Assuming that the path is a directory, iterate over its
contents and return sub-paths matching the given shell-style
glob pattern.

	
Path.is_block_device()

	Returns whether the path resolves to a block device file.

	
Path.is_char_device()

	Returns whether the path resolves to a character device file.

	
Path.is_dir()

	Returns whether the path resolves to a directory.

	
Path.is_fifo()

	Returns whether the path resolves to a Unix FIFO.

	
Path.is_file()

	Returns whether the path resolves to a regular file.

	
Path.is_socket()

	Returns whether the path resolves to a Unix socket.

	
Path.is_symlink()

	Returns whether the path resolves to a symbolic link.

	
Path.iterdir()

	Iterate over the files in this directory. Does not yield any
result for the special paths ‘.’ and ‘..’.

Assuming the path is a directory, generate a sequence of
sub-paths corresponding to its contents.

	
Path.match(pattern)

	Test whether this path matches the given shell glob pattern.

	
Path.readlink()

	Assuming that this path is a symbolic link, read its contents and
return them as another Path object. An “invalid argument”
OSError will be raised if this path does not point to a symbolic link.

	
Path.rglob(pattern)

	Recursively yield all files and directories matching the shell
glob pattern pattern below this path.

	
Path.scandir()

	Iteratively scan this path, assuming it’s a directory. This requires and
uses the scandir module.

scandir is different than iterdir because it generates DirEntry
items rather than Path instances. DirEntry objects have their
properties filled from the directory info itself, so querying them
avoids syscalls that would be necessary with iterdir().

The generated values are scandir.DirEntry objects which have
some information pre-filled. These objects have methods inode(),
is_dir(), is_file(), is_symlink(), and stat(). They
have attributes name (the basename of the entry) and path (its
full path).

	
Path.stat()

	Run os.stat() [https://docs.python.org/3/library/os.html#os.stat] on the path and return the result.

Filesystem modifications

These functions actually modify the filesystem.

	chmod(mode)

	Change the permissions of the path, like os.chmod().

	copy_to(dest[, preserve])

	Copy this path — as a file — to another dest.

	ensure_dir([mode, parents])

	Ensure that this path exists as a directory.

	ensure_parent([mode, parents])

	Ensure that this path’s parent directory exists.

	make_tempfile([want, resolution, suffix])

	Get a context manager that creates and cleans up a uniquely-named temporary file with a name similar to this path.

	mkdir([mode, parents, exist_ok])

	Create a new directory at this given path.

	rellink_to(target[, force])

	Make this path a symlink pointing to the given target, generating the proper relative path using make_relative().

	rename(target)

	Rename this path to the given path.

	rmdir()

	Remove this directory.

	rmtree([errors])

	Recursively delete this directory and its contents.

	symlink_to(target[, target_is_directory])

	Make this path a symlink pointing to the given path.

	touch([mode, exist_ok])

	Create this file with the given access mode, if it doesn’t exist.

	unlink()

	Remove this file or link.

	try_unlink()

	Try to unlink this path.

Detailed descriptions

	
Path.chmod(mode)

	Change the mode of the named path. Remember to use octal
0o755 notation!

	
Path.copy_to(dest, preserve='mode')

	Copy this path — as a file — to another dest.

The preserve argument specifies which meta-properties of the file
should be preserved:

	none

	Only copy the file data.

	mode

	Copy the data and the file mode (permissions, etc).

	all

	Preserve as much as possible: mode, modification times, etc.

The destination dest may be a directory.

Returns the final destination path.

	
Path.ensure_dir(mode=511, parents=False)

	Ensure that this path exists as a directory.

This function calls mkdir() on this path, but does not raise an
exception if it already exists. It does raise an exception if this
path exists but is not a directory. If the directory is created,
mode is used to set the permissions of the resulting directory, with
the important caveat that the current os.umask() [https://docs.python.org/3/library/os.html#os.umask] is applied.

It returns a boolean indicating if the directory was actually created.

If parents is true, parent directories will be created in the same
manner.

	
Path.ensure_parent(mode=511, parents=False)

	Ensure that this path’s parent directory exists.

Returns a boolean whether the parent directory was created. Will
attempt to create superior parent directories if parents is true.

	
Path.make_tempfile(want='handle', resolution='try_unlink', suffix='', **kwargs)

	Get a context manager that creates and cleans up a uniquely-named temporary
file with a name similar to this path.

This function returns a context manager that creates a secure
temporary file with a path similar to self. In particular, if
str(self) is something like foo/bar, the path of the temporary
file will be something like foo/bar.ame8_2.

The object returned by the context manager depends on the want argument:

	"handle"

	An open file-like object is returned. This is the object returned by
tempfile.NamedTemporaryFile. Its name on the filesystem is
accessible as a string as its name attribute, or (a customization here)
as a Path instance as its path attribute.

	"path"

	The temporary file is created as in "handle", but is then immediately
closed. A Path instance pointing to the path of the temporary file is
instead returned.

If an exception occurs inside the context manager block, the temporary file is
left lying around. Otherwise, what happens to it upon exit from the context
manager depends on the resolution argument:

	"try_unlink"

	Call try_unlink() on the temporary file — no exception is raised if
the file did not exist.

	"unlink"

	Call unlink() on the temporary file — an exception is raised if
the file did not exist.

	"keep"

	The temporary file is left lying around.

	"overwrite"

	The temporary file is rename()-d to overwrite self.

For instance, when rewriting important files, it’s typical to write
the new data to a temporary file, and only rename the temporary file
to the final destination at the end — that way, if a problem happens
while writing the new data, the original file is left unmodified;
otherwise you’d be stuck with a partially-written version of the file.
This pattern can be accomplished with:

p = Path ('path/to/important/file')
with p.make_tempfile (resolution='overwrite', mode='wt') as h:
 print ('important stuff goes here', file=h)

The suffix argument is appended to the temporary file name after the
random portion. It defaults to the empty string. If you want it to
operate as a typical filename suffix, include a leading ".".

Other kwargs are passed to tempfile.NamedTemporaryFile.

	
Path.mkdir(mode=0o777, parents=False)

	Create a directory at this path location. Creates parent directories if
parents is true. Raises OSError [https://docs.python.org/3/library/exceptions.html#OSError] if the path already exists, even
if parents is true.

	
Path.rellink_to(target, force=False)

	Make this path a symlink pointing to the given target, generating the
proper relative path using make_relative(). This gives different
behavior than symlink_to(). For instance, Path
('a/b').symlink_to ('c') results in a/b pointing to the path
c, whereas rellink_to() results in it pointing to ../c.
This can result in broken relative paths if (continuing the example)
a is a symbolic link to a directory.

If either target or self is absolute, the symlink will point at
the absolute path to target. The intention is that if you’re trying
to link /foo/bar to bee/boo, it probably makes more sense for
the link to point to /path/to/.../bee/boo rather than
../../../../bee/boo.

If force is true, try_unlink() will be called on self before
the link is made, forcing its re-creation.

	
Path.rename(target)

	Rename this path to target.

	
Path.rmdir()

	Delete this path, if it is an empty directory.

	
Path.rmtree(errors='warn')

	Recursively delete this directory and its contents. The errors keyword
specifies how errors are handled:

	“warn” (the default)

	Print a warning to standard error.

	“ignore”

	Ignore errors.

	
Path.symlink_to(target, target_is_directory=False)

	Make this path a symlink pointing to the given target.

	
Path.touch(mode=0o666, exist_ok=True)

	Create a file at this path with the given mode, if needed.

	
Path.unlink()

	Unlink this file or symbolic link.

	
Path.try_unlink()

	Try to unlink this path. If it doesn’t exist, no error is returned. Returns
a boolean indicating whether the path was really unlinked.

Data input and output

	open([mode, buffering, encoding, errors, …])

	Open the file pointed by this path and return a file object, as the built-in open() function does.

	try_open([null_if_noexist])

	Call Path.open() on this path (passing kwargs) and return the result.

	as_hdf_store([mode])

	Return the path as an opened pandas.HDFStore object.

	read_astropy_ascii(**kwargs)

	Open as an ASCII table, returning a astropy.table.Table object.

	read_fits(**kwargs)

	Open as a FITS file, returning a astropy.io.fits.HDUList object.

	read_fits_bintable([hdu, drop_nonscalar_ok])

	Open as a FITS file, read in a binary table, and return it as a pandas.DataFrame, converted with pkwit.numutil.fits_recarray_to_data_frame().

	read_hdf(key, **kwargs)

	Open as an HDF5 file using pandas and return the item stored under the key key.

	read_inifile([noexistok, typed])

	Open assuming an “ini-file” format and return a generator yielding data records using either pwkit.inifile.read_stream() (if typed is false) or pwkit.tinifile.read_stream() (if it’s true).

	read_json([mode])

	Use the json [https://docs.python.org/3/library/json.html#module-json] module to read in this file as a JSON-formatted data structure.

	read_lines([mode, noexistok])

	Generate a sequence of lines from the file pointed to by this path, by opening as a regular file and iterating over it.

	read_numpy(**kwargs)

	Read this path into a numpy.ndarray using numpy.load().

	read_numpy_text([dfcols])

	Read this path into a numpy.ndarray as a text file using numpy.loadtxt().

	read_pandas([format])

	Read using pandas.

	read_pickle()

	Open the file, unpickle one object from it using pickle [https://docs.python.org/3/library/pickle.html#module-pickle], and return it.

	read_pickles()

	Generate a sequence of objects by opening the path and unpickling items until EOF is reached.

	read_tabfile(**kwargs)

	Read this path as a table of typed measurements via pwkit.tabfile.read().

	read_text([encoding, errors, newline])

	Read this path as one large chunk of text.

	read_toml([encoding, errors, newline])

	Read this path as a TOML document.

	read_yaml([encoding, errors, newline])

	Read this path as a YAML document.

	write_pickle(obj)

	Dump obj to this path using cPickle.

	write_pickles(objs)

	objs must be iterable.

	write_yaml(data[, encoding, errors, newline])

	Read data to this path as a YAML document.

Detailed descriptions

	
Path.open(mode='r', buffering=-1, encoding=None, errors=None, newline=None)

	Open the file pointed at by the path and return a file object.
This delegates to the modern io.open() [https://docs.python.org/3/library/io.html#io.open] function, not the global
builtin open().

	
Path.try_open(null_if_noexist=False, **kwargs)

	Call Path.open() on this path (passing kwargs) and return the
result. If the file doesn’t exist, the behavior depends on
null_if_noexist. If it is false (the default), None is returned.
Otherwise, os.devnull [https://docs.python.org/3/library/os.html#os.devnull] is opened and returned.

	
Path.as_hdf_store(mode='r', **kwargs)

	Return the path as an opened pandas.HDFStore object. Note that the
HDFStore constructor unconditionally prints messages to
standard output when opening and closing files, so use of this
function will pollute your program’s standard output. The kwargs are
forwarded to the HDFStore constructor.

	
Path.read_astropy_ascii(**kwargs)

	Open as an ASCII table, returning a astropy.table.Table object.
Keyword arguments are passed to astropy.io.ascii.open(); valid
ones likely include:

	names = <list> (column names)

	format (‘basic’, ‘cds’, ‘csv’, ‘ipac’, …)

	guess = True (guess table format)

	delimiter (column delimiter)

	comment = <regex>

	header_start = <int> (line number of header, ignoring blank and comment lines)

	data_start = <int>

	data_end = <int>

	converters = <dict>

	include_names = <list> (names of columns to include)

	exclude_names = <list> (names of columns to exclude; applied after include)

	fill_values = <dict> (filler values)

	
Path.read_fits(**kwargs)

	Open as a FITS file, returning a astropy.io.fits.HDUList object.
Keyword arguments are passed to astropy.io.fits.open(); valid
ones likely include:

	mode = 'readonly' (or “update”, “append”, “denywrite”, “ostream”)

	memmap = None

	save_backup = False

	cache = True

	uint = False

	ignore_missing_end = False

	checksum = False

	disable_image_compression = False

	do_not_scale_image_data = False

	ignore_blank = False

	scale_back = False

	
Path.read_fits_bintable(hdu=1, drop_nonscalar_ok=True, **kwargs)

	Open as a FITS file, read in a binary table, and return it as a
pandas.DataFrame, converted with
pkwit.numutil.fits_recarray_to_data_frame(). The hdu argument
specifies which HDU to read, with its default 1 indicating the first
FITS extension. The drop_nonscalar_ok argument specifies if
non-scalar table values (which are inexpressible in
pandas.DataFrame`s) should be silently ignored (``True`) or
cause a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] to be raised (False). Other kwargs
are passed to astropy.io.fits.open(), (see
Path.read_fits()) although the open mode is hardcoded to be
"readonly".

	
Path.read_hdf(key, **kwargs)

	Open as an HDF5 file using pandas and return the item stored under
the key key. kwargs are passed to pandas.read_hdf().

	
Path.read_inifile(noexistok=False, typed=False)

	Open assuming an “ini-file” format and return a generator yielding data
records using either pwkit.inifile.read_stream() (if typed is
false) or pwkit.tinifile.read_stream() (if it’s true). The
latter version is designed to work with numerical data using the
pwkit.msmt subsystem. If noexistok is true, a nonexistent
file will result in no items being generated rather than an
IOError [https://docs.python.org/3/library/exceptions.html#IOError] being raised.

	
Path.read_json(mode='rt', **kwargs)

	Use the json [https://docs.python.org/3/library/json.html#module-json] module to read in this file as a JSON-formatted data
structure. Keyword arguments are passed to json.load() [https://docs.python.org/3/library/json.html#json.load]. Returns the
read-in data structure.

	
Path.read_lines(mode='rt', noexistok=False, **kwargs)

	Generate a sequence of lines from the file pointed to by this path, by
opening as a regular file and iterating over it. The lines therefore
contain their newline characters. If noexistok, a nonexistent file
will result in an empty sequence rather than an exception. kwargs
are passed to Path.open().

	
Path.read_numpy(**kwargs)

	Read this path into a numpy.ndarray using numpy.load().
kwargs are passed to numpy.load(); they likely are:

	mmap_modeNone, ‘r+’, ‘r’, ‘w+’, ‘c’

	Load the array using memory-mapping

	allow_picklebool = True

	Whether Pickle-format data are allowed; potential security hazard.

	fix_importsbool = True

	Try to fix Python 2->3 import renames when loading Pickle-format data.

	encoding‘ASCII’, ‘latin1’, ‘bytes’

	The encoding to use when reading Python 2 strings in Pickle-format data.

	
Path.read_numpy_text(dfcols=None, **kwargs)

	Read this path into a numpy.ndarray as a text file using
numpy.loadtxt(). In normal conditions the returned array is
two-dimensional, with the first axis spanning the rows in the file and
the second axis columns (but see the unpack and dfcols keywords).

If dfcols is not None, the return value is a
pandas.DataFrame constructed from the array. dfcols should
be an iterable of column names, one for each of the columns returned
by the numpy.loadtxt() call. For convenience, if dfcols is a
single string, it will by turned into an iterable by a call to
str.split().

The remaining kwargs are passed to numpy.loadtxt(); they likely are:

	dtypedata type

	The data type of the resulting array.

	commentsstr

	If specific, a character indicating the start of a comment.

	delimiterstr

	The string that separates values. If unspecified, any span of whitespace works.

	convertersdict

	A dictionary mapping zero-based column number to a function that will
turn the cell text into a number.

	skiprowsint (default=0)

	Skip this many lines at the top of the file

	usecolssequence

	Which columns keep, by number, starting at zero.

	unpackbool (default=False)

	If true, the return value is transposed to be of shape (cols, rows).

	ndminint (default=0)

	The returned array will have at least this many dimensions; otherwise
mono-dimensional axes will be squeezed.

	
Path.read_pandas(format='table', **kwargs)

	Read using pandas. The function pandas.read_FORMAT is called
where FORMAT is set from the argument format. kwargs are
passed to this function. Supported formats likely include
clipboard, csv, excel, fwf, gbq, html,
json, msgpack, pickle, sql, sql_query,
sql_table, stata, table. Note that hdf is not
supported because it requires a non-keyword argument; see
Path.read_hdf().

	
Path.read_pickle()

	Open the file, unpickle one object from it using pickle [https://docs.python.org/3/library/pickle.html#module-pickle], and return
it.

	
Path.read_pickles()

	Generate a sequence of objects by opening the path and unpickling items
until EOF is reached.

	
Path.read_tabfile(**kwargs)

	Read this path as a table of typed measurements via
pwkit.tabfile.read(). Returns a generator for a sequence of
pwkit.Holder objects, one for each row in the table, with
attributes for each of the columns.

	tabwidthint (default=8)

	The tab width to assume. Defaults to 8 and should not be changed unless
absolutely necessary.

	modestr (default=’rt’)

	The file open mode, passed to io.open() [https://docs.python.org/3/library/io.html#io.open].

	noexistokbool (default=False)

	If true, a nonexistent file will result in no items being generated, as
opposed to an IOError [https://docs.python.org/3/library/exceptions.html#IOError].

	kwargskeywords

	Additional arguments are passed to io.open() [https://docs.python.org/3/library/io.html#io.open].

	
Path.read_text(encoding=None, errors=None, newline=None)

	Read this path as one large chunk of text.

This function reads in the entire file as one big piece of text and
returns it. The encoding, errors, and newline keywords are
passed to open().

This is not a good way to read files unless you know for sure that they
are small.

	
Path.read_toml(encoding=None, errors=None, newline=None, **kwargs)

	Read this path as a TOML document.

The TOML [https://github.com/toml-lang/toml] parsing is done with
the pytoml module. The encoding, errors, and newline
keywords are passed to open(). The remaining kwargs are passed
to toml.load().

Returns the decoded data structure.

	
Path.read_yaml(encoding=None, errors=None, newline=None, **kwargs)

	Read this path as a YAML document.

The YAML parsing is done with the yaml module. The encoding,
errors, and newline keywords are passed to open(). The
remaining kwargs are passed to yaml.load().

Returns the decoded data structure.

	
Path.write_pickle(obj)

	Dump obj to this path using cPickle.

	
Path.write_pickles(objs)

	objs must be iterable. Write each of its values to this path in sequence
using cPickle.

	
Path.write_yaml(data, encoding=None, errors=None, newline=None, **kwargs)

	Read data to this path as a YAML document.

The encoding, errors, and newline keywords are passed to
open(). The remaining kwargs are passed to yaml.dump().

Functions helping with Unicode safety

	get_stdout_bytes()

	Get a reference to the standard output stream that accepts bytes, not unicode characters.

	get_stderr_bytes()

	Get a reference to the standard error stream that accepts bytes, not unicode characters.

	
pwkit.io.get_stdout_bytes()

	Get a reference to the standard output stream that accepts bytes, not
unicode characters.

Returns: a file-like object hooked up to the process’ standard output.

Usually, you want to write text to a process’s standard output stream
(“stdout”), so you want sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] to be a stream that accepts
Unicode. The function pwkit.cli.unicode_stdio() sets this up in
Python 2, which has an imperfect hack to allow Unicode output to work most
of the time. However, there are other times when you really do want to
write arbitrary binary data to stdout. Depending on whether you’re using
Python 2 or Python 3, or whether pwkit.cli.unicode_stdio() has been
called, the right way to get access to the underlying byte-based stream is
different. This function encapsulates these checks and works across all of
these cases.

	
pwkit.io.get_stderr_bytes()

	Get a reference to the standard error stream that accepts bytes, not
unicode characters.

Returns: a file-like object hooked up to the process’ standard error.

Usually, you want to write text to a process’s standard error stream
(“stderr”), so you want sys.stderr [https://docs.python.org/3/library/sys.html#sys.stderr] to be a stream that accepts
Unicode. The function pwkit.cli.unicode_stdio() sets this up in
Python 2, which has an imperfect hack to allow Unicode output to work most
of the time. However, there are other times when you really do want to
write arbitrary binary data to stderr. Depending on whether you’re using
Python 2 or Python 3, or whether pwkit.cli.unicode_stdio() has been
called, the right way to get access to the underlying byte-based stream is
different. This function encapsulates these checks and works across all of
these cases.

Other functions in pwkit.io

These are generally superseded by operations on Path.

	
pwkit.io.try_open(*args, **kwargs)

	Placeholder.

	
pwkit.io.words(linegen)

	Placeholder.

	
pwkit.io.pathwords(path, mode='rt', noexistok=False, **kwargs)

	Placeholder.

	
pwkit.io.pathlines(path, mode='rt', noexistok=False, **kwargs)

	Placeholder.

	
pwkit.io.make_path_func(*baseparts)

	Placeholder.

	
pwkit.io.djoin(*args)

	Placeholder.

	
pwkit.io.rellink(source, dest)

	Placeholder.

	
pwkit.io.ensure_dir(path, parents=False)

	Placeholder.

	
pwkit.io.ensure_symlink(src, dst)

	Placeholder.

Numerical utilities (pwkit.numutil)

The numpy and scipy packages provide a whole host of
routines, but there are still some that are missing. The pwkit.numutil
module provides several useful additions.

The functionality in this module can be grouped into these categories:

	Making functions that auto-broadcast their arguments

	Convenience functions for statistics

	Convenience functions for pandas.DataFrame objects

	Parallelized versions of simple math algorithms

	Tophat and step functions

Making functions that auto-broadcast their arguments

	
@pwkit.numutil.broadcastize(n_arr, ret_spec=0, force_float=True)

	Wrap a function to automatically broadcast numpy.ndarray arguments.

It’s often desirable to write numerical utility functions in a way that’s
compatible with vectorized processing. It can be tedious to do this,
however, since the function arguments need to turned into arrays and
checked for compatible shape, and scalar values need to be special cased.

The @broadcastize decorator takes care of these matters. The decorated
function can be implemented in vectorized form under the assumption that
all array arguments have been broadcast to the same shape. The broadcasting
of inputs and (potentially) de-vectorizing of the return values are done
automatically. For instance, if you decorate a function foo(x,y) with
@numutil.broadcastize(2), you can implement it assuming that both x
and y are numpy.ndarray objects that have at least one dimension
and are both of the same shape. If the function is called with only scalar
arguments, x and y will have shape (1,) and the function’s return
value will be turned back into a scalar before reaching the caller.

The n_arr argument specifies the number of array arguments that the
function takes. These are required to be at the beginning of its argument
list.

The ret_spec argument specifies the structure of the function’s return
value.

	0 indicates that the value has the same shape as the (broadcasted)
vector arguments. If the arguments are all scalar, the return value will
be scalar too.

	1 indicates that the value is an array of higher rank than the input
arguments. For instance, if the input has shape (3,), the output
might have shape (4,4,3); in general, if the input has shape s,
the output will have shape t + s for some tuple t. If the
arguments are all scalar, the output will have a shape of just t. The
numpy.asarray() function is called on such arguments, so (for
instance) you can return a list of arrays [a, b] and it will be
converted into a numpy.ndarray.

	None indicates that the value is completely independ of the inputs. It
is returned as-is.

	A tuple t indicates that the return value is also a tuple. The
elements of the ret_spec tuple should contain the values listed above,
and each element of the return value will be handled accordingly.

The default ret_spec is 0, i.e. the return value is expected to be an
array of the same shape as the argument(s).

If force_float is true (the default), the input arrays will be converted to
floating-point types if necessary (with numpy.asfarray()) before being
passed to the function.

Example:

@numutil.broadcastize (2, ret_spec=(0, 1, None)):
def myfunction (x, y, extra_arg):
 print ('a random non-vector argument is:', extra_arg)
 z = x + y
 z[np.where (y)] *= 2
 higher_vector = [x, y, z]
 return z, higher_vector, 'hello'

Convenience functions for statistics

	rms(x)

	Return the square root of the mean of the squares of x.

	weighted_mean(values, uncerts, **kwargs)

	

	weighted_mean_df(df, **kwargs)

	The same as weighted_mean(), except the argument is expected to be a two-column pandas.DataFrame whose first column gives the data values and second column gives their uncertainties.

	weighted_variance(x, weights)

	Return the variance of a weighted sample.

	
pwkit.numutil.rms(x)

	Return the square root of the mean of the squares of x.

	
pwkit.numutil.weighted_mean(values, uncerts, **kwargs)

	

	
pwkit.numutil.weighted_mean_df(df, **kwargs)

	The same as weighted_mean(), except the argument is expected to be a
two-column pandas.DataFrame whose first column gives the data
values and second column gives their uncertainties. Returns
(weighted_mean, uncertainty_in_mean).

	
pwkit.numutil.weighted_variance(x, weights)

	Return the variance of a weighted sample.

The weighted sample mean is calculated and subtracted off, so the returned
variance is upweighted by n / (n - 1). If the sample mean is known to
be zero, you should just compute np.average(x**2, weights=weights).

Convenience functions for pandas.DataFrame objects

	reduce_data_frame(df, chunk_slicers[, …])

	“Reduce” a DataFrame by collapsing rows in grouped chunks.

	reduce_data_frame_evenly_with_gaps(df, …)

	“Reduce” a DataFrame by collapsing rows in grouped chunks, grouping based on gaps in one of the columns.

	slice_around_gaps(values, maxgap)

	Given an ordered array of values, generate a set of slices that traverse all of the values.

	slice_evenly_with_gaps(values, target_len, …)

	Given an ordered array of values, generate a set of slices that traverse all of the values.

	dfsmooth(window, df, ucol[, k])

	Smooth a pandas.DataFrame according to a window, weighting based on uncertainties.

	smooth_data_frame_with_gaps(window, df, …)

	Smooth a pandas.DataFrame according to a window, weighting based on uncertainties, and breaking the smoothing process at gaps in a time axis.

	fits_recarray_to_data_frame(recarray[, …])

	Convert a FITS data table, stored as a Numpy record array, into a Pandas DataFrame object.

	data_frame_to_astropy_table(dataframe)

	This is a backport of the Astropy method astropy.table.table.Table.from_pandas().

	usmooth(window, uncerts, *data, **kwargs)

	Smooth data series according to a window, weighting based on uncertainties.

	page_data_frame(df[, pager_argv])

	Render a DataFrame as text and send it to a terminal pager program (e.g.

	
pwkit.numutil.reduce_data_frame(df, chunk_slicers, avg_cols=(), uavg_cols=(), minmax_cols=(), nchunk_colname='nchunk', uncert_prefix='u', min_points_per_chunk=3)

	“Reduce” a DataFrame by collapsing rows in grouped chunks. Returns another
DataFrame with similar columns but fewer rows.

Arguments:

	df

	The input pandas.DataFrame.

	chunk_slicers

	An iterable that returns values that are used to slice df with its
pandas.DataFrame.iloc() indexer. An example value might be the
generator returned from slice_evenly_with_gaps().

	avg_cols

	An iterable of names of columns that are to be reduced by taking the mean.

	uavg_cols

	An iterable of names of columns that are to be reduced by taking a
weighted mean.

	minmax_cols

	An iterable of names of columns that are to be reduced by reporting minimum
and maximum values.

	nchunk_colname

	The name of a column to create reporting the number of rows contributing
to each chunk.

	uncert_prefix

	The column name prefix for locating uncertainty estimates. By default, the
uncertainty on the column "temp" is given in the column "utemp".

	min_points_per_chunk

	Require at least this many rows in each chunk. Smaller chunks are discarded.

Returns a new pandas.DataFrame.

	
pwkit.numutil.reduce_data_frame_evenly_with_gaps(df, valcol, target_len, maxgap, **kwargs)

	“Reduce” a DataFrame by collapsing rows in grouped chunks, grouping based on
gaps in one of the columns.

This function combines reduce_data_frame() with
slice_evenly_with_gaps().

	
pwkit.numutil.slice_around_gaps(values, maxgap)

	Given an ordered array of values, generate a set of slices that traverse
all of the values. Within each slice, no gap between adjacent values is
larger than maxgap. In other words, these slices break the array into
chunks separated by gaps of size larger than maxgap.

	
pwkit.numutil.slice_evenly_with_gaps(values, target_len, maxgap)

	Given an ordered array of values, generate a set of slices that traverse
all of the values. Each slice contains about target_len items. However,
no slice contains a gap larger than maxgap, so a slice may contain only
a single item (if it is surrounded on both sides by a large gap). If a
non-gapped run of values does not divide evenly into target_len, the
algorithm errs on the side of making the slices contain more than
target_len items, rather than fewer. It also attempts to keep the slice
size uniform within each non-gapped run.

	
pwkit.numutil.dfsmooth(window, df, ucol, k=None)

	Smooth a pandas.DataFrame according to a window, weighting based on
uncertainties.

Arguments are:

	window

	The smoothing window.

	df

	The pandas.DataFrame.

	ucol

	The name of the column in df that contains the uncertainties to weight
by.

	k = None

	If specified, only every k-th point of the results will be kept. If k
is None (the default), it is set to window.size, i.e. correlated
points will be discarded.

Returns: a smoothed data frame.

The returned data frame has a default integer index.

Example:

sdata = numutil.dfsmooth(np.hamming(7), data, 'u_temp')

	
pwkit.numutil.fits_recarray_to_data_frame(recarray, drop_nonscalar_ok=True)

	Convert a FITS data table, stored as a Numpy record array, into a Pandas
DataFrame object. By default, non-scalar columns are discarded, but if
drop_nonscalar_ok is False then a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised. Column
names are lower-cased. Example:

from pwkit import io, numutil
hdu_list = io.Path('my-table.fits').read_fits()
assuming the first FITS extension is a binary table:
df = numutil.fits_recarray_to_data_frame(hdu_list[1].data)

FITS data are big-endian, whereas nowadays almost everything is
little-endian. This seems to be an issue for Pandas DataFrames, where
df[['col1', 'col2']] triggers an assertion for me if the underlying
data are not native-byte-ordered. This function normalizes the read-in
data to native endianness to avoid this.

See also pwkit.io.Path.read_fits_bintable().

	
pwkit.numutil.data_frame_to_astropy_table(dataframe)

	This is a backport of the Astropy method
astropy.table.table.Table.from_pandas(). It converts a Pandas
pandas.DataFrame object to an Astropy
astropy.table.Table.

	
pwkit.numutil.usmooth(window, uncerts, *data, **kwargs)

	Smooth data series according to a window, weighting based on uncertainties.

Arguments:

	window

	The smoothing window.

	uncerts

	An array of uncertainties used to weight the smoothing.

	data

	One or more data series, of the same size as uncerts.

	k = None

	If specified, only every k-th point of the results will be kept. If k
is None (the default), it is set to window.size, i.e. correlated
points will be discarded.

Returns: (s_uncerts, s_data[0], s_data[1], ...), the smoothed
uncertainties and data series.

Example:

u, x, y = numutil.usmooth(np.hamming(7), u, x, y)

	
pwkit.numutil.page_data_frame(df, pager_argv=['less'], **kwargs)

	Render a DataFrame as text and send it to a terminal pager program (e.g.
less), so that one can browse a full table conveniently.

	df

	The DataFrame to view

	pager_argv: default ['less']

	A list of strings passed to subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] that launches
the pager program

	kwargs

	Additional keywords are passed to pandas.DataFrame.to_string().

Returns None. Execution blocks until the pager subprocess exits.

Parallelized versions of simple math algorithms

	parallel_newton(func, x0[, fprime, …])

	A parallelized version of scipy.optimize.newton().

	parallel_quad(func, a, b[, par_args, …])

	A parallelized version of scipy.integrate.quad().

	
pwkit.numutil.parallel_newton(func, x0, fprime=None, par_args=(), simple_args=(), tol=1.48e-08, maxiter=50, parallel=True, **kwargs)

	A parallelized version of scipy.optimize.newton().

Arguments:

	func

	The function to search for zeros, called as f(x, [*par_args...], [*simple_args...]).

	x0

	The initial point for the zero search.

	fprime

	(Optional) The first derivative of func, called the same way.

	par_args

	Tuple of additional parallelized arguments.

	simple_args

	Tuple of additional arguments passed identically to every invocation.

	tol

	The allowable error of the zero value.

	maxiter

	Maximum number of iterations.

	parallel

	Controls parallelization; default uses all available cores. See
pwkit.parallel.make_parallel_helper().

	kwargs

	Passed to scipy.optimize.newton().

Returns: an array of locations of zeros.

Finds zeros in parallel. The values x0, tol, maxiter, and the items
of par_args should all be numeric, and may be N-dimensional Numpy
arrays. They are all broadcast to a common shape, and one zero-finding run
is performed for each element in the resulting array. The return value is
an array of zero locations having the same shape as the common broadcast
of the parameters named above.

The simple_args are passed to each function identically for each
integration. They do not need to be Pickle-able.

Example:

>>> parallel_newton(lambda x, a: x - 2 * a, 2,
 par_args=(np.arange(6),))
<<< array([0., 2., 4., 6., 8., 10.])
>>> parallel_newton(lambda x: np.sin(x), np.arange(6))
<<< array([0.00000000e+00, 3.65526589e-26, 3.14159265e+00,
 3.14159265e+00, 3.14159265e+00, 6.28318531e+00])

	
pwkit.numutil.parallel_quad(func, a, b, par_args=(), simple_args=(), parallel=True, **kwargs)

	A parallelized version of scipy.integrate.quad().

Arguments are:

	func

	The function to integrate, called as f(x, [*par_args...], [*simple_args...]).

	a

	The lower limit(s) of integration.

	b

	The upper limits(s) of integration.

	par_args

	Tuple of additional parallelized arguments.

	simple_args

	Tuple of additional arguments passed identically to every invocation.

	parallel

	Controls parallelization; default uses all available cores. See
pwkit.parallel.make_parallel_helper().

	kwargs

	Passed to scipy.integrate.quad(). Don’t set full_output to True.

Returns: integrals and errors; see below.

Computes many integrals in parallel. The values a, b, and the items of
par_args should all be numeric, and may be N-dimensional Numpy arrays.
They are all broadcast to a common shape, and one integral is performed
for each element in the resulting array. If this common shape is (X,Y,Z),
the return value has shape (2,X,Y,Z), where the subarray [0,…] contains
the computed integrals and the subarray [1,…] contains the absolute
error estimates. If a, b, and the items in par_args are all scalars,
the return value has shape (2,).

The simple_args are passed to each integrand function identically for each
integration. They do not need to be Pickle-able.

Example:

>>> parallel_quad(lambda x, u, v, q: u * x + v,
 0, # a
 [3, 4], # b
 (np.arange(6).reshape((3,2)), np.arange(3).reshape((3,1))), # par_args
 ('hello',),)

Computes six integrals and returns an array of shape (2,3,2). The
functions that are evaluated are:

[[0*x + 0, 1*x + 0],
 [2*x + 1, 3*x + 1],
 [4*x + 2, 5*x + 2]]

and the bounds of the integrals are:

[[(0, 3), (0, 4)],
 [(0, 3), (0, 4)],
 [(0, 3), (0, 4)]]

In all cases the unused fourth parameter q is 'hello'.

Tophat and step functions

	unit_tophat_ee(x)

	Tophat function on the unit interval, left-exclusive and right-exclusive.

	unit_tophat_ei(x)

	Tophat function on the unit interval, left-exclusive and right-inclusive.

	unit_tophat_ie(x)

	Tophat function on the unit interval, left-inclusive and right-exclusive.

	unit_tophat_ii(x)

	Tophat function on the unit interval, left-inclusive and right-inclusive.

	make_tophat_ee(lower, upper)

	Return a ufunc-like tophat function on the defined range, left-exclusive and right-exclusive.

	make_tophat_ei(lower, upper)

	Return a ufunc-like tophat function on the defined range, left-exclusive and right-inclusive.

	make_tophat_ie(lower, upper)

	Return a ufunc-like tophat function on the defined range, left-inclusive and right-exclusive.

	make_tophat_ii(lower, upper)

	Return a ufunc-like tophat function on the defined range, left-inclusive and right-inclusive.

	make_step_lcont(transition)

	Return a ufunc-like step function that is left-continuous.

	make_step_rcont(transition)

	Return a ufunc-like step function that is right-continuous.

	
pwkit.numutil.unit_tophat_ee(x)

	Tophat function on the unit interval, left-exclusive and right-exclusive.
Returns 1 if 0 < x < 1, 0 otherwise.

	
pwkit.numutil.unit_tophat_ei(x)

	Tophat function on the unit interval, left-exclusive and right-inclusive.
Returns 1 if 0 < x <= 1, 0 otherwise.

	
pwkit.numutil.unit_tophat_ie(x)

	Tophat function on the unit interval, left-inclusive and right-exclusive.
Returns 1 if 0 <= x < 1, 0 otherwise.

	
pwkit.numutil.unit_tophat_ii(x)

	Tophat function on the unit interval, left-inclusive and right-inclusive.
Returns 1 if 0 <= x <= 1, 0 otherwise.

	
pwkit.numutil.make_tophat_ee(lower, upper)

	Return a ufunc-like tophat function on the defined range, left-exclusive
and right-exclusive. Returns 1 if lower < x < upper, 0 otherwise.

	
pwkit.numutil.make_tophat_ei(lower, upper)

	Return a ufunc-like tophat function on the defined range, left-exclusive
and right-inclusive. Returns 1 if lower < x <= upper, 0 otherwise.

	
pwkit.numutil.make_tophat_ie(lower, upper)

	Return a ufunc-like tophat function on the defined range, left-inclusive
and right-exclusive. Returns 1 if lower <= x < upper, 0 otherwise.

	
pwkit.numutil.make_tophat_ii(lower, upper)

	Return a ufunc-like tophat function on the defined range, left-inclusive
and right-inclusive. Returns 1 if lower < x < upper, 0 otherwise.

	
pwkit.numutil.make_step_lcont(transition)

	Return a ufunc-like step function that is left-continuous. Returns 1 if
x > transition, 0 otherwise.

	
pwkit.numutil.make_step_rcont(transition)

	Return a ufunc-like step function that is right-continuous. Returns 1 if
x >= transition, 0 otherwise.

Framework for easy parallelized processing (pwkit.parallel)

A framework making it easy to write functions that can perform computations
in parallel.

Use this framework if you are writing a function that you would like to
perform some of its work in parallel, using multiple CPUs at once. First, you
must design the parallel part of the function’s operation to be implementable
in terms of the standard library map() [https://docs.python.org/3/library/functions.html#map] function. Then, give your
function an optional parallel=True keyword argument and use the
make_parallel_helper() function from this module like so:

from pwkit.parallel import make_parallel_helper

def my_parallelizable_function(arg1, arg1, parallel=True):
 # Get a "parallel helper" object that can provide us with a parallelized
 # "map" function. The caller specifies how the parallelization is done;
 # we don't have to know the details.
 phelp = make_parallel_helper(parallel)
 ...

 # When used as a context manager, the helper provides a function that
 # acts like the standard library function "map", except it may
 # parallelize its operation.
 with phelp.get_map() as map:
 results1 = map(my_subfunc1, subargs1)
 ...
 results2 = map(my_subfunc2, subargs2)

 ... do stuff with results1 and results2 ...

Passing parallel=True to a function defined this way will cause it to
parallelize map calls across all cores. Passing parallel=0.5 will
cause it to use about half your machine. Passing parallel=False will cause
it to use serial processing. The helper must be used as a context manager (via
the with statement) because the parallel computation may involve creating
and destroying heavyweight resources (namely, child processes).

Along with standard ParallelHelper.get_map(), ParallelHelper
instances support a “partially-Pickling” map-like function
ParallelHelper.get_ppmap() that works around Pickle-related limitations
in the multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] library.

Main Interface

The most important parts of this module are the make_parallel_helper()
function and the interface defined by the abstract ParallelHelper
class.

	make_parallel_helper(parallel_arg, **kwargs)

	Return a ParallelHelper object that can be used for easy parallelization of computations.

	ParallelHelper

	Object that helps genericize the setup needed for parallel computations.

	
pwkit.parallel.make_parallel_helper(parallel_arg, **kwargs)

	Return a ParallelHelper object that can be used for easy
parallelization of computations. parallel_arg is an object that lets the
caller easily specify the kind of parallelization they are interested in.
Allowed values are:

	False

	Serial processing only.

	True

	Parallel processing using all available cores.

	1

	Equivalent to False.

	Other positive integer

	Parallel processing using the specified number of cores.

	x, 0 < x < 1

	Parallel processing using about x * N cores, where N is the total
number of cores in the system. Note that the meanings of 0.99 and 1
as arguments are very different.

	ParallelHelper instance

	Returns the instance.

The **kwargs are passed on to the appropriate ParallelHelper
constructor, if the caller wants to do something tricky.

Expected usage is:

from pwkit.parallel import make_parallel_helper

def sub_operation(arg):
 ... do some computation ...
 return result

def my_parallelizable_function(arg1, arg2, parallel=True):
 phelp = make_parallel_helper(parallel)

 with phelp.get_map() as map:
 op_results = map(sub_operation, args)

 ... reduce "op_results" in some way ...
 return final_result

This means that my_parallelizable_function doesn’t have to worry about
all of the various fancy things the caller might want to do in terms of
special parallel magic.

Note that sub_operation above must be defined in a stand-alone fashion
because of the way Python’s multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] module works. This can
be worked around somewhat with the special
ParallelHelper.get_ppmap() variant. This returns a
“partially-Pickling” map operation — with a different calling signature
— that allows un-Pickle-able values to be used. See the documentation
for serial_ppmap() for usage information.

	
class pwkit.parallel.ParallelHelper

	Object that helps genericize the setup needed for parallel computations.
Each method returns a context manager that wraps up any resource
allocation and deallocation that may need to occur to make the
parallelization happen under the hood.

ParallelHelper objects should be obtained by calling
make_parallel_helper(), not direct construction, unless you have
special needs. See the documentation of that function for an example of
the general usage pattern.

Once you have a ParallelHelper instance, usage should be
something like:

with phelp.get_map() as map:
 results_arr = map(my_function, my_args)

The partially-Pickling map works around a limitation in the
multiprocessing library. This library spawns subprocesses and executes
parallel tasks by sending them to the subprocesses, which means that the
data describing the task must be pickle-able. There are hacks so that you
can pass functions defined in the global namespace but they’re pretty much
useless in production code. The “partially-Pickling map” works around this
by using a different method that allows some arguments to the map
operation to avoid being pickled. (Instead, they are directly inherited by
os.fork() [https://docs.python.org/3/library/os.html#os.fork]-ed subprocesses.) See the docs for serial_ppmap() for
usage information.

	
get_map()

	Get a context manager that yields a function with the same call signature
as the standard library function map() [https://docs.python.org/3/library/functions.html#map]. Its results are the
same, but it may evaluate the mapped function in parallel across
multiple threads or processes — the calling function should not have
to particularly care about the details. Example usage is:

with phelp.get_map() as map:
 results_arr = map(my_function, my_args)

The passed function and its arguments must be Pickle-able. The alternate
method get_ppmap() relaxes this restriction somewhat.

	
get_ppmap()

	Get a context manager that yields a “partially-pickling map function”. It
can be used to perform a parallelized map() [https://docs.python.org/3/library/functions.html#map] operation with some
un-pickle-able arguments.

The yielded function has the signature of serial_ppmap(). Its
behavior is functionally equivalent to the following code, except that
the calls to func may happen in parallel:

def ppmap(func, fixed_arg, var_arg_iter):
 return [func(i, fixed_arg, x) for i, x in enumerate(var_arg_iter)]

The arguments to the ppmap function are:

	func

	A callable taking three arguments and returning a Pickle-able value.

	fixed_arg

	Any value, even one that is not pickle-able.

	var_arg_iter

	An iterable that generates Pickle-able values.

The arguments to your func function, which actually does the
interesting computations, are:

	index

	The 0-based index number of the item being processed; often this can
be ignored.

	fixed_arg

	The same fixed_arg that was passed to ppmap.

	var_arg

	The index’th item in the var_arg_iter iterable passed to
ppmap.

This variant of the standard map() [https://docs.python.org/3/library/functions.html#map] function exists to allow the
parallel-processing system to work around pickle [https://docs.python.org/3/library/pickle.html#module-pickle]-related
limitations in the multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] library.

Implementation Details

Some of these classes and functions may be useful for other modules, but in
generally you need only concern yourself with the make_parallel_helper()
function and ParallelHelper base class.

	SerialHelper([chunksize])

	A ParallelHelper that actually does serial processing.

	serial_ppmap(func, fixed_arg, var_arg_iter)

	A serial implementation of the “partially-pickling map” function returned by the ParallelHelper.get_ppmap() interface.

	MultiprocessingPoolHelper([chunksize])

	A ParallelHelper that parallelizes computations using Python’s multiprocessing.Pool with a configurable number of processes.

	multiprocessing_ppmap_worker(in_queue, …)

	Worker for the multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] ppmap implementation.

	InterruptiblePool([processes, initializer, …])

	A modified version of multiprocessing.pool.Pool that has better behavior with regard to KeyboardInterrupts in the map method.

	VacuousContextManager(value)

	A context manager that just returns a static value and doesn’t do anything clever with exceptions.

	
class pwkit.parallel.SerialHelper(chunksize=None)

	A ParallelHelper that actually does serial processing.

	
pwkit.parallel.serial_ppmap(func, fixed_arg, var_arg_iter)

	A serial implementation of the “partially-pickling map” function returned
by the ParallelHelper.get_ppmap() interface. Its arguments are:

	func

	A callable taking three arguments and returning a Pickle-able value.

	fixed_arg

	Any value, even one that is not pickle-able.

	var_arg_iter

	An iterable that generates Pickle-able values.

The functionality is:

def serial_ppmap(func, fixed_arg, var_arg_iter):
 return [func(i, fixed_arg, x) for i, x in enumerate(var_arg_iter)]

Therefore the arguments to your func function, which actually does the
interesting computations, are:

	index

	The 0-based index number of the item being processed; often this can
be ignored.

	fixed_arg

	The same fixed_arg that was passed to ppmap.

	var_arg

	The index’th item in the var_arg_iter iterable passed to
ppmap.

	
class pwkit.parallel.MultiprocessingPoolHelper(chunksize=None, **pool_kwargs)

	A ParallelHelper that parallelizes computations using Python’s
multiprocessing.Pool with a configurable number of processes.
Actually, we use a wrapped version of multiprocessing.Pool that
handles KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] exceptions more helpfully.

	
pwkit.parallel.multiprocessing_ppmap_worker(in_queue, out_queue, func, fixed_arg)

	Worker for the multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] ppmap implementation. Strongly
derived from code posted on StackExchange by “klaus se”:
http://stackoverflow.com/a/16071616/3760486.

	
class pwkit.parallel.InterruptiblePool(processes=None, initializer=None, initargs=(), **kwargs)

	A modified version of multiprocessing.pool.Pool that has better
behavior with regard to KeyboardInterrupts in the map method. Parameters:

	processes

	The number of worker processes to use; defaults to the number of CPUs.

	initializer

	Either None, or a callable that will be invoked by each worker
process when it starts.

	initargs

	Arguments for initializer.

	kwargs

	Extra arguments. Python 2.7 supports a maxtasksperchild parameter.

Python’s multiprocessing.Pool class doesn’t interact well with
KeyboardInterrupt signals, as documented in places such as:

	http://stackoverflow.com/questions/1408356/

	http://stackoverflow.com/questions/11312525/

	http://noswap.com/blog/python-multiprocessing-keyboardinterrupt

Various workarounds have been shared. Here, we adapt the one proposed in
the last link above, by John Reese, and shared as

	https://github.com/jreese/multiprocessing-keyboardinterrupt/

This version is a drop-in replacement for multiprocessing.Pool … as long
as the map() method is the only one that needs to be interrupt-friendly.

	
class pwkit.parallel.VacuousContextManager(value)

	A context manager that just returns a static value and doesn’t do anything
clever with exceptions.

Quick enumerations of constant values (pwkit.simpleenum)

The pwkit.simpleenum module contains a single decorator function for
creating “enumerations”, by which we mean a group of named, un-modifiable
values. For example:

from pwkit.simpleenum import enumeration

@enumeration
class Constants (object):
 period_days = 2.771
 period_hours = period_days * 24
 n_iters = 300
 # etc

def myfunction ():
 print ('the period is', Constants.period_hours, 'hours')

The class declaration syntax is handy here because it lets you define new
values in relation to old values. In the above example, you cannot change any
of the properties of Constants once it is constructed.

Important

If you populate an enumeration with a mutable data type,
however, we’re unable to prevent you from modifying it. For instance, if
you do this:

@enumeration
class Dangerous (object):
 mutable = [1, 2]
 immutable = (1, 2)

You can then do something like write Dangerous.mutable.append (3) and
modify the value stored in the enumeration. If you’re concerned about this,
make sure to populate the enumeration with immutable classes such as
tuple [https://docs.python.org/3/library/stdtypes.html#tuple], frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset], int [https://docs.python.org/3/library/functions.html#int], and so on.

	
pwkit.simpleenum.enumeration(cls)

	A very simple decorator for creating enumerations. Unlike Python 3.4
enumerations, this just gives a way to use a class declaration to create
an immutable object containing only the values specified in the class.

If the attribute __pickle_compat__ is set to True in the decorated
class, the resulting enumeration value will be callable such that
EnumClass(x) = x. This is needed to unpickle enumeration values that
were previously implemented using enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum].

Scientific Algorithms

This documentation has a lot of stubs.

	Basic astronomical calculations (pwkit.astutil)
	Useful Constants

	Sexagesimal Notation

	Working with Angles

	Simple Operations on 2D Gaussians

	Basic Astrometry

	Miscellaneous Astronomical Computations

	File-format-agnostic loading of astronomical images (pwkit.astimage)

	The Bayesian Blocks algorithm (pwkit.bblocks)

	Constants in CGS units (pwkit.cgs)

	Simple synchrotron radiation emission coefficients (pwkit.dulk_models)
	Free-free emission

	Gyrosynchrotron emission

	Relativistic synchrotron emission

	Helpers

	Representations of and computations with ellipses (pwkit.ellipses)

	Run the Fleischman & Kuznetsov (2010) synchrotron code (pwkit.fk10)
	Installing the code

	Modeling sources in images (pwkit.immodel)

	Bayesian confidence intervals for count rates (pwkit.kbn_conf)

	Nonlinear least-squares minimization with Levenberg-Marquardt (pwkit.lmmin)

	Fitting generic models with least-squares minimization (pwkit.lsqmdl)
	Generic Nonlinear Modeling

	One-dimensional Polynomial Modeling

	Modeling of a Single Scale Factor

	Modeling With Pluggable Components

	Math with uncertain and censored measurements (pwkit.msmt)

	Period-finding with Phase Dispersion Minimization (pwkit.pdm)

	Loading the outputs of PHOENIX atmospheric models (pwkit.phoenix)

	Flux density models of radio calibrators (pwkit.radio_cal_models)

	Helpers for X-ray spectral modeling with the Sherpa packge (pwkit.sherpa)
	Additional Spectral Models

	Tools for Plotting with Sherpa Data Objects

	Data Structure Utilities

	Synthetic photometry (pwkit.synphot)
	Example

	Conventions

	References

	The Registry class

	The Bandpass class

	Simple, careful conversions

	Exceptions

	Scaling relations for physical properties of ultra-cool dwarfs (pwkit.ucd_physics)

Basic astronomical calculations (pwkit.astutil)

This module provides functions and constants for doing a variety of basic
calculations and conversions that come up in astronomy.

This topics covered in this module are:

	Useful Constants

	Sexagesimal Notation

	Working with Angles

	Simple Operations on 2D Gaussians

	Basic Astrometry

	Miscellaneous Astronomical Computations

Angles are always measured in radians, whereas some other astronomical
codebases prefer degrees.

Useful Constants

The following useful constants are provided:

	pi

	Mathematical π.

	twopi

	Mathematical 2π.

	halfpi

	Mathematical π/2.

	R2A

	A constant for converting radians to arcseconds by multiplication:

arcsec = radians * astutil.R2A

Equal to 3600 * 180 / pi or about 206265.

	A2R

	A constant for converting arcseconds to radians by multiplication:

radians = arcsec * astutil.A2R

	R2D

	Analogous to R2A: a constant for converting radians to degrees

	D2R

	Analogous to A2R: a constant for converting degrees to radians

	R2H

	Analogous to R2A: a constant for converting radians to hours

	H2R

	Analogous to A2R: a constant for converting hours to radians

	F2S

	A constant for converting a Gaussian FWHM (full width at half maximum) to
a standard deviation (σ) value by multiplication:

sigma = fwhm * astutil.F2S

Equal to (8 * ln(2))**-0.5 or about 0.425.

	S2F

	A constant for converting a Gaussian standard deviation (σ) value to a
FWHM (full width at half maximum) by multiplication.

	J2000

	The astronomical J2000.0 epoch as a MJD (modified Julian Date). Precisely
equal to 51544.5.

Sexagesimal Notation

	fmthours(radians[, norm, precision, seps])

	Format an angle as sexagesimal hours in a string.

	fmtdeglon(radians[, norm, precision, seps])

	Format a longitudinal angle as sexagesimal degrees in a string.

	fmtdeglat(radians[, norm, precision, seps])

	Format a latitudinal angle as sexagesimal degrees in a string.

	fmtradec(rarad, decrad[, precision, raseps, …])

	Format equatorial coordinates in a single sexagesimal string.

	parsehours(hrstr)

	Parse a string formatted as sexagesimal hours into an angle.

	parsedeglat(latstr)

	Parse a latitude formatted as sexagesimal degrees into an angle.

	parsedeglon(lonstr)

	Parse a longitude formatted as sexagesimal degrees into an angle.

	
pwkit.astutil.fmthours(radians, norm='wrap', precision=3, seps='::')

	Format an angle as sexagesimal hours in a string.

Arguments are:

	radians

	The angle, in radians.

	norm (default “wrap”)

	The normalization mode, used for angles outside of the standard range
of 0 to 2π. If “none”, the value is formatted ignoring any potential
problems. If “wrap”, it is wrapped to lie within the standard range.
If “raise”, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

	precision (default 3)

	The number of decimal places in the “seconds” place to use in the
formatted string.

	seps (default “::”)

	A two- or three-item iterable, used to separate the hours, minutes, and
seconds components. If a third element is present, it appears after the
seconds component. Specifying “hms” yields something like “12h34m56s”;
specifying ['', ''] yields something like “123456”.

Returns a string.

	
pwkit.astutil.fmtdeglon(radians, norm='wrap', precision=2, seps='::')

	Format a longitudinal angle as sexagesimal degrees in a string.

Arguments are:

	radians

	The angle, in radians.

	norm (default “wrap”)

	The normalization mode, used for angles outside of the standard range
of 0 to 2π. If “none”, the value is formatted ignoring any potential
problems. If “wrap”, it is wrapped to lie within the standard range.
If “raise”, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

	precision (default 2)

	The number of decimal places in the “arcseconds” place to use in the
formatted string.

	seps (default “::”)

	A two- or three-item iterable, used to separate the degrees, arcminutes,
and arcseconds components. If a third element is present, it appears
after the arcseconds component. Specifying “dms” yields something like
“12d34m56s”; specifying ['', ''] yields something like “123456”.

Returns a string.

	
pwkit.astutil.fmtdeglat(radians, norm='raise', precision=2, seps='::')

	Format a latitudinal angle as sexagesimal degrees in a string.

Arguments are:

	radians

	The angle, in radians.

	norm (default “raise”)

	The normalization mode, used for angles outside of the standard range
of -π/2 to π/2. If “none”, the value is formatted ignoring any potential
problems. If “wrap”, it is wrapped to lie within the standard range.
If “raise”, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

	precision (default 2)

	The number of decimal places in the “arcseconds” place to use in the
formatted string.

	seps (default “::”)

	A two- or three-item iterable, used to separate the degrees, arcminutes,
and arcseconds components. If a third element is present, it appears
after the arcseconds component. Specifying “dms” yields something like
“+12d34m56s”; specifying ['', ''] yields something like “123456”.

Returns a string. The return value always includes a plus or minus sign.
Note that the default of norm is different than in fmthours() and
fmtdeglon() since it’s not so clear what a “latitude” of 110 degrees
(e.g.) means.

	
pwkit.astutil.fmtradec(rarad, decrad, precision=2, raseps='::', decseps='::', intersep=' ')

	Format equatorial coordinates in a single sexagesimal string.

Returns a string of the RA/lon coordinate, formatted as sexagesimal hours,
then intersep, then the Dec/lat coordinate, formatted as degrees. This
yields something like “12:34:56.78 -01:23:45.6”. Arguments are:

	rarad

	The right ascension coordinate, in radians. More generically, this is
the longitudinal coordinate; note that the ordering in this function
differs than the other spherical functions, which generally prefer
coordinates in “lat, lon” order.

	decrad

	The declination coordinate, in radians. More generically, this is the
latitudinal coordinate.

	precision (default 2)

	The number of decimal places in the “arcseconds” place of the
latitudinal (declination) coordinate. The longitudinal (right ascension)
coordinate gets one additional place, since hours are bigger than
degrees.

	raseps (default “::”)

	A two- or three-item iterable, used to separate the hours, minutes, and
seconds components of the RA/lon coordinate. If a third element is
present, it appears after the seconds component. Specifying “hms” yields
something like “12h34m56s”; specifying ['', ''] yields something
like “123456”.

	decseps (default “::”)

	A two- or three-item iterable, used to separate the degrees, arcminutes,
and arcseconds components of the Dec/lat coordinate.

	intersep (default ” “)

	The string separating the RA/lon and Dec/lat coordinates

	
pwkit.astutil.parsehours(hrstr)

	Parse a string formatted as sexagesimal hours into an angle.

This function converts a textual representation of an angle, measured in
hours, into a floating point value measured in radians. The format of
hrstr is very limited: it may not have leading or trailing whitespace,
and the components of the sexagesimal representation must be separated by
colons. The input must therefore resemble something like
"12:34:56.78". A ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised if the input does
not resemble this template. Hours greater than 24 are not allowed, but
negative values are.

	
pwkit.astutil.parsedeglat(latstr)

	Parse a latitude formatted as sexagesimal degrees into an angle.

This function converts a textual representation of a latitude, measured in
degrees, into a floating point value measured in radians. The format of
latstr is very limited: it may not have leading or trailing whitespace,
and the components of the sexagesimal representation must be separated by
colons. The input must therefore resemble something like
"-00:12:34.5". A ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised if the input does
not resemble this template. Latitudes greater than 90 or less than -90
degrees are not allowed.

	
pwkit.astutil.parsedeglon(lonstr)

	Parse a longitude formatted as sexagesimal degrees into an angle.

This function converts a textual representation of a longitude, measured
in degrees, into a floating point value measured in radians. The format of
lonstr is very limited: it may not have leading or trailing whitespace,
and the components of the sexagesimal representation must be separated by
colons. The input must therefore resemble something like
"270:12:34.5". A ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be raised if the input does
not resemble this template. Values of any sign and magnitude are allowed,
and they are not normalized (e.g. to lie within the range [0, 2π]).

Working with Angles

	angcen(a)

	

	orientcen(a)

	

	sphdist(lat1, lon1, lat2, lon2)

	Calculate the distance between two locations on a sphere.

	sphbear(lat1, lon1, lat2, lon2[, tol])

	Calculate the bearing between two locations on a sphere.

	sphofs(lat1, lon1, r, pa[, tol, rmax])

	Offset from one location on the sphere to another.

	parang(hourangle, declination, latitude)

	Calculate the parallactic angle of a sky position.

	
pwkit.astutil.angcen(a)

	“Center” an angle a to be between -π and +π.

This is done by adding or subtracting multiples of 2π as necessary. Both
a and the return value are in radians. The argument may be a vector.

	
pwkit.astutil.orientcen(a)

	“Center” an orientation a to be between -π/2 and +π/2.

This is done by adding or subtract multiples of π as necessary. Both a
and the return value are in radians. The argument may be a vector.

An “orientation” is different than an angle because values that differ by
just π, not 2π, are considered equivalent. Orientations can come up in the
discussion of linear polarization, for example.

	
pwkit.astutil.sphdist(lat1, lon1, lat2, lon2)

	Calculate the distance between two locations on a sphere.

	lat1

	The latitude of the first location.

	lon1

	The longitude of the first location.

	lat2

	The latitude of the second location.

	lon2

	The longitude of the second location.

Returns the separation in radians. All arguments are in radians as well.
The arguments may be vectors.

Note that the ordering of the arguments maps to the nonstandard ordering
(Dec, RA) in equatorial coordinates. In a spherical projection it maps
to (Y, X) which may also be unexpected.

The distance is computed with the “specialized Vincenty formula”. Faster
but more error-prone formulae are possible; see Wikipedia on Great-circle
Distance.

	
pwkit.astutil.sphbear(lat1, lon1, lat2, lon2, tol=1e-15)

	Calculate the bearing between two locations on a sphere.

	lat1

	The latitude of the first location.

	lon1

	The longitude of the first location.

	lat2

	The latitude of the second location.

	lon2

	The longitude of the second location.

	tol

	Tolerance for checking proximity to poles and rounding to zero.

The bearing (AKA the position angle, PA) is the orientation of point 2
with regards to point 1 relative to the longitudinal axis. Returns the
bearing in radians. All arguments are in radians as well. The arguments
may be vectors.

Note that the ordering of the arguments maps to the nonstandard ordering
(Dec, RA) in equatorial coordinates. In a spherical projection it maps
to (Y, X) which may also be unexpected.

The sign convention is astronomical: bearings range from -π to π, with
negative values if point 2 is in the western hemisphere with regards to
point 1, positive if it is in the eastern. (That is, “east from north”.)
If point 1 is very near the pole, the bearing is undefined and the result
is NaN.

The tol argument is used for checking proximity to the poles and for
rounding the bearing to precisely zero if it’s extremely small.

Derived from bear() in angles.py from Prasanth Nair [https://github.com/phn/angles]. His version is BSD licensed. This one
is sufficiently different that I think it counts as a separate
implementation.

	
pwkit.astutil.sphofs(lat1, lon1, r, pa, tol=0.01, rmax=None)

	Offset from one location on the sphere to another.

This function is given a start location, expressed as a latitude and
longitude, a distance to offset, and a direction to offset (expressed as a
bearing, AKA position angle). It uses these to compute a final location.
This function mirrors sphdist() and sphbear() such that:

If:
r = sphdist (lat1, lon1, lat2a, lon2a)
pa = sphbear (lat1, lon1, lat2a, lon2a)
lat2b, lon2b = sphofs (lat1, lon1, r, pa)
Then lat2b = lat2a and lon2b = lon2a

Arguments are:

	lat1

	The latitude of the start location.

	lon1

	The longitude of the start location.

	r

	The distance to offset by.

	pa

	The position angle (“PA” or bearing) to offset towards.

	tol

	The tolerance for the accuracy of the calculation.

	rmax

	The maximum allowed offset distance.

Returns a pair (lat2, lon2). All arguments and the return values are
measured in radians. The arguments may be vectors. The PA sign convention
is astronomical, measuring orientation east from north.

Note that the ordering of the arguments and return values maps to the
nonstandard ordering (Dec, RA) in equatorial coordinates. In a
spherical projection it maps to (Y, X) which may also be unexpected.

The offset is computed naively as:

lat2 = lat1 + r * cos (pa)
lon2 = lon1 + r * sin (pa) / cos (lat2)

This will fail for large offsets. Error checking can be done in two ways.
If tol is not None, sphdist() is used to calculate the actual
distance between the two locations, and if the magnitude of the fractional
difference between that and r is larger than tol, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is
raised. This will add an overhead to the computation that may be
significant if you’re going to be calling this function a lot.

Additionally, if rmax is not None, magnitudes of r greater than rmax
are rejected. For reference, an r of 0.2 (~11 deg) gives a maximum
fractional distance error of ~3%.

	
pwkit.astutil.parang(hourangle, declination, latitude)

	Calculate the parallactic angle of a sky position.

This computes the parallactic angle of a sky position expressed in terms
of an hour angle and declination. Arguments:

	hourangle

	The hour angle of the location on the sky.

	declination

	The declination of the location on the sky.

	latitude

	The latitude of the observatory.

Inputs and outputs are all in radians. Implementation adapted from GBTIDL
parangle.pro.

Simple Operations on 2D Gaussians

	
pwkit.astutil.gaussian_convolve(maj1, min1, pa1, maj2, min2, pa2)

	Convolve two Gaussians analytically.

Given the shapes of two 2-dimensional Gaussians, this function returns
the shape of their convolution.

Arguments:

	maj1

	Major axis of input Gaussian 1.

	min1

	Minor axis of input Gaussian 1.

	pa1

	Orientation angle of input Gaussian 1, in radians.

	maj2

	Major axis of input Gaussian 2.

	min2

	Minor axis of input Gaussian 2.

	pa2

	Orientation angle of input Gaussian 2, in radians.

The return value is (maj3, min3, pa3), with the same format as the
input arguments. The axes can be measured in any units, so long as they’re
consistent.

Implementation copied from MIRIAD’s gaufac.

	
pwkit.astutil.gaussian_deconvolve(smaj, smin, spa, bmaj, bmin, bpa)

	Deconvolve two Gaussians analytically.

Given the shapes of 2-dimensional “source” and “beam” Gaussians, this
returns a deconvolved “result” Gaussian such that the convolution of
“beam” and “result” is “source”.

Arguments:

	smaj

	Major axis of source Gaussian.

	smin

	Minor axis of source Gaussian.

	spa

	Orientation angle of source Gaussian, in radians.

	bmaj

	Major axis of beam Gaussian.

	bmin

	Minor axis of beam Gaussian.

	bpa

	Orientation angle of beam Gaussian, in radians.

The return value is (rmaj, rmin, rpa, status). The first three values
have the same format as the input arguments. The status result is one of
“ok”, “pointlike”, or “fail”. A “pointlike” status indicates that the
source and beam shapes are difficult to distinguish; a “fail” status
indicates that the two shapes seem to be mutually incompatible (e.g.,
source and beam are very narrow and orthogonal).

The axes can be measured in any units, so long as they’re consistent.

Ideally if:

rmaj, rmin, rpa, status = gaussian_deconvolve (smaj, smin, spa, bmaj, bmin, bpa)

then:

smaj, smin, spa = gaussian_convolve (rmaj, rmin, rpa, bmaj, bmin, bpa)

Implementation derived from MIRIAD’s gaudfac. This function currently
doesn’t do a great job of dealing with pointlike sources, i.e. ones where
“source” and “beam” are nearly indistinguishable.

Basic Astrometry

The AstrometryInfo class can be used to perform basic astrometric
calculations that are nonetheless fairly accurate.

	
class pwkit.astutil.AstrometryInfo(simbadident=None, **kwargs)

	Holds astrometric data and their uncertainties, and can predict
positions with uncertainties.

The attributes encoding the astrometric data are as follows. Values of
None will be treated as unknown. Most of this information can be
automatically filled in from the fill_from_simbad() function, if you
trust Simbad.

	ra

	The J2000 right ascension of the object, measured in radians.

	dec

	The J2000 declination of the object, measured in radians.

	pos_u_maj

	Major axis of the error ellipse for the object position, in radians.

	pos_u_min

	Minor axis of the error ellipse for the object position, in radians.

	pos_u_pa

	Position angle (really orientation) of the error ellipse for the object position, east from north, in radians.

	pos_epoch

	The epoch of position, that is, the date when the position was measured, in MJD[TT].

	promo_ra

	The proper motion in right ascension, in milliarcsec per year.

	promo_dec

	The object’s proper motion in declination, in milliarcsec per year.

	promo_u_maj

	Major axis of the error ellipse for the object’s proper motion, in milliarcsec per year.

	promo_u_min

	Minor axis of the error ellipse for the object’s proper motion, in milliarcsec per year.

	promo_u_pa

	Position angle (really orientation) of the error ellipse for the object proper motion, east from north, in radians.

	parallax

	The object’s parallax, in milliarcsec.

	u_parallax

	Uncertainty in the object’s parallax, in milliarcsec.

	vradial

	The object’s radial velocity, in km/s.

	u_vradial

	The uncertainty in the object’s radial velocity, in km/s.

Methods are:

	verify([complain])

	Validate that the attributes are self-consistent.

	predict(mjd[, complain, n])

	Predict the object position at a given MJD.

	print_prediction(ptup[, precision])

	Print a summary of a predicted position.

	predict_without_uncertainties(mjd[, complain])

	Predict the object position at a given MJD.

	fill_from_simbad(ident[, debug])

	Fill in astrometric information using the Simbad web service.

	fill_from_allwise(ident[, catalog_ident])

	Fill in astrometric information from the AllWISE catalog using Astroquery.

The stringification of an AstrometryInfo class formats its fields
in a human-readable, multiline format that uses Unicode characters.

	
AstrometryInfo.ra = None

	The J2000 right ascension of the object, measured in radians.

	
AstrometryInfo.dec = None

	The J2000 declination of the object, measured in radians.

	
AstrometryInfo.pos_u_maj = None

	Major axis of the error ellipse for the object position, in radians.

	
AstrometryInfo.pos_u_min = None

	Minor axis of the error ellipse for the object position, in radians.

	
AstrometryInfo.pos_u_pa = None

	Position angle (really orientation) of the error ellipse for the object
position, east from north, in radians.

	
AstrometryInfo.pos_epoch = None

	The epoch of position, that is, the date when the position was measured, in
MJD[TT].

	
AstrometryInfo.promo_ra = None

	The proper motion in right ascension, in milliarcsec per year. XXX:
cos(dec) confusion!

	
AstrometryInfo.promo_dec = None

	The object’s proper motion in declination, in milliarcsec per year.

	
AstrometryInfo.promo_u_maj = None

	Major axis of the error ellipse for the object’s proper motion, in
milliarcsec per year.

	
AstrometryInfo.promo_u_min = None

	Minor axis of the error ellipse for the object’s proper motion, in
milliarcsec per year.

	
AstrometryInfo.promo_u_pa = None

	Position angle (really orientation) of the error ellipse for the object
proper motion, east from north, in radians.

	
AstrometryInfo.parallax = None

	The object’s parallax, in milliarcsec.

	
AstrometryInfo.u_parallax = None

	Uncertainty in the object’s parallax, in milliarcsec.

	
AstrometryInfo.vradial = None

	The object’s radial velocity, in km/s. NOTE: not relevant in our usage.

	
AstrometryInfo.u_vradial = None

	The uncertainty in the object’s radial velocity, in km/s. NOTE: not
relevant in our usage.

	
AstrometryInfo.verify(complain=True)

	Validate that the attributes are self-consistent.

This function does some basic checks of the object attributes to
ensure that astrometric calculations can legally be performed. If the
complain keyword is true, messages may be printed to
sys.stderr [https://docs.python.org/3/library/sys.html#sys.stderr] if non-fatal issues are encountered.

Returns self.

	
AstrometryInfo.predict(mjd, complain=True, n=20000)

	Predict the object position at a given MJD.

The return value is a tuple (ra, dec, major, minor, pa), all in
radians. These are the predicted position of the object and its
uncertainty at mjd. If complain is True, print out warnings for
incomplete information. n is the number of Monte Carlo samples to
draw for computing the positional uncertainty.

The uncertainty ellipse parameters are sigmas, not FWHM. These may be
converted with the S2F constant.

This function relies on the external skyfield package.

	
AstrometryInfo.print_prediction(ptup, precision=2)

	Print a summary of a predicted position.

The argument ptup is a tuple returned by predict(). It is
printed to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] in a reasonable format that uses Unicode
characters.

	
AstrometryInfo.predict_without_uncertainties(mjd, complain=True)

	Predict the object position at a given MJD.

The return value is a tuple (ra, dec), in radians, giving the
predicted position of the object at mjd. Unlike predict(), the
astrometric uncertainties are ignored. This function is therefore
deterministic but potentially misleading.

If complain is True, print out warnings for incomplete information.

This function relies on the external skyfield package.

	
AstrometryInfo.fill_from_simbad(ident, debug=False)

	Fill in astrometric information using the Simbad web service.

This uses the CDS Simbad web service to look up astrometric
information for the source name ident and fills in attributes
appropriately. Values from Simbad are not always reliable.

Returns self.

	
AstrometryInfo.fill_from_allwise(ident, catalog_ident='II/328/allwise')

	Fill in astrometric information from the AllWISE catalog using Astroquery.

This uses the astroquery module to query the AllWISE
(2013wise.rept….1C) source catalog through the Vizier
(2000A&AS..143…23O) web service. It then fills in the instance with
the relevant information. Arguments are:

	ident

	The AllWISE catalog identifier of the form "J112254.70+255021.9".

	catalog_ident

	The Vizier designation of the catalog to query. The default is
“II/328/allwise”, the current version of the AllWISE catalog.

Raises PKError if something unexpected happens that
doesn’t itself result in an exception within astroquery.

You should probably prefer fill_from_simbad() for objects that
are known to the CDS Simbad service, but not all objects in the
AllWISE catalog are so known.

If you use this function, you should acknowledge AllWISE [http://irsadist.ipac.caltech.edu/wise-allwise/] and Vizier [http://cds.u-strasbg.fr/vizier-org/licences_vizier.html].

Returns self.

A few helper functions may also be of interest:

	load_skyfield_data()

	Load data files used in Skyfield.

	get_2mass_epoch(tmra, tmdec[, debug])

	Given a 2MASS position, look up the epoch when it was observed.

	get_simbad_astrometry_info(ident[, items, debug])

	Fetch astrometric information from the Simbad web service.

	
pwkit.astutil.load_skyfield_data()

	Load data files used in Skyfield. This will download files from the
internet if they haven’t been downloaded before.

Skyfield downloads files to the current directory by default, which is not
ideal. Here we abuse astropy and use its cache directory to cache the data
files per-user. If we start downloading files in other places in pwkit we
should maybe make this system more generic. And the dep on astropy is not
at all necessary.

Skyfield will print out a progress bar as it downloads things.

Returns (planets, ts), the standard Skyfield ephemeris and timescale
data files.

	
pwkit.astutil.get_2mass_epoch(tmra, tmdec, debug=False)

	Given a 2MASS position, look up the epoch when it was observed.

This function uses the CDS Vizier web service to look up information in
the 2MASS point source database. Arguments are:

	tmra

	The source’s J2000 right ascension, in radians.

	tmdec

	The source’s J2000 declination, in radians.

	debug

	If True, the web server’s response will be printed to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout].

The return value is an MJD. If the lookup fails, a message will be printed
to sys.stderr [https://docs.python.org/3/library/sys.html#sys.stderr] (unconditionally!) and the J2000 epoch will
be returned.

	
pwkit.astutil.get_simbad_astrometry_info(ident, items=['COO(d;A)', 'COO(d;D)', 'COO(E)', 'COO(B)', 'PM(A)', 'PM(D)', 'PM(E)', 'PLX(V)', 'PLX(E)', 'RV(V)', 'RV(E)'], debug=False)

	Fetch astrometric information from the Simbad web service.

Given the name of a source as known to the CDS Simbad service, this
function looks up its positional information and returns it in a
dictionary. In most cases you should use an AstrometryInfo object
and its fill_from_simbad() method instead of this
function.

Arguments:

	ident

	The Simbad name of the source to look up.

	items

	An iterable of data items to look up. The default fetches position,
proper motion, parallax, and radial velocity information. Each item name
resembles the string COO(d;A) or PLX(E). The allowed formats are
defined on this CDS page [http://simbad.u-strasbg.fr/Pages/guide/sim-fscript.htx].

	debug

	If true, the response from the webserver will be printed.

The return value is a dictionary with a key corresponding to the textual
result returned for each requested item.

Miscellaneous Astronomical Computations

These functions don’t fit under the other rubrics very well.

	abs2app(abs_mag, dist_pc)

	Convert an absolute magnitude to an apparent magnitude, given a source’s (luminosity) distance in parsecs.

	app2abs(app_mag, dist_pc)

	Convert an apparent magnitude to an absolute magnitude, given a source’s (luminosity) distance in parsecs.

	
pwkit.astutil.abs2app(abs_mag, dist_pc)

	Convert an absolute magnitude to an apparent magnitude, given a source’s
(luminosity) distance in parsecs.

Arguments:

	abs_mag

	Absolute magnitude.

	dist_pc

	Distance, in parsecs.

Returns the apparent magnitude. The arguments may be vectors.

	
pwkit.astutil.app2abs(app_mag, dist_pc)

	Convert an apparent magnitude to an absolute magnitude, given a source’s
(luminosity) distance in parsecs.

Arguments:

	app_mag

	Apparent magnitude.

	dist_pc

	Distance, in parsecs.

Returns the absolute magnitude. The arguments may be vectors.

File-format-agnostic loading of astronomical images (pwkit.astimage)

pwkit.astimage – generic loading of (radio) astronomical images

Use open (path, mode) to open an astronomical image, regardless of its file
format.

The emphasis of this module is on getting 90%-good-enough semantics and a
really, genuinely, uniform interface. This can be tough to achieve.

	
exception pwkit.astimage.UnsupportedError(fmt, *args)

	

	
class pwkit.astimage.AstroImage(path, mode)

	An astronomical image.

	path

	The filesystem path of the image.

	mode

	Its access mode: ‘r’ for read, ‘rw’ for read/write.

	shape

	The data shape, like numpy.ndarray.shape.

	bmaj

	If not None, the restoring beam FWHM major axis in radians.

	bmin

	If not None, the restoring beam FWHM minor axis in radians.

	bpa

	If not None, the restoring beam position angle (east from celestial
north) in radians.

	units

	Lower-case string describing image units (e.g., jy/beam, jy/pixel).
Not standardized between formats.

	pclat

	Latitude (usually dec) of the pointing center in radians.

	pclon

	Longitude (usually RA) of the pointing center in radians.

	charfreq

	Characteristic observing frequency of the image in GHz.

	mjd

	Mean MJD of the observations.

	axdescs

	If not None, list of strings describing the axis types.
Not standardized.

	size

	The number of pixels in the image (=shape.prod ()).

Methods:

	close

	Close the image.

	read

	Read all of the data.

	write

	Rewrite all of the data.

	toworld

	Convert pixel coordinates to world coordinates.

	topixel

	Convert world coordinates to pixel coordinates.

	simple

	Convert to a 2D lat/lon image.

	subimage

	Extract a sub-cube of the image.

	save_copy

	Save a copy of the image.

	save_as_fits

	Save a copy of the image in FITS format.

	delete

	Delete the on-disk image.

	
axdescs = None

	If not None, list of strings describing the axis types;
no standard format.

	
bmaj = None

	If not None, the restoring beam FWHM major axis in radians

	
bmin = None

	If not None, the restoring beam FWHM minor axis in radians

	
bpa = None

	If not None, the restoring beam position angle (east
from celestial north) in radians

	
charfreq = None

	Characteristic observing frequency of the image in GHz

	
mjd = None

	Mean MJD of the observations

	
pclat = None

	Latitude of the pointing center in radians

	
pclon = None

	Longitude of the pointing center in radians

	
shape = None

	An integer ndarray of the image shape

	
subimage(pixofs, shape)

	Extract a sub-cube of this image.

Both pixofs and shape should be integer arrays with as many
elements as this image has axes. Thinking of this operation as taking
a Python slice of an N-dimensional cube, the i’th axis of the
sub-image is slices from pixofs[i] to pixofs[i] + shape[i].

	
units = None

	Lower-case string describing image units (e.g., jy/beam, jy/pixel)

	
class pwkit.astimage.MIRIADImage(path, mode)

	A MIRIAD format image. Requires the mirtask module from miriad-python.

	
class pwkit.astimage.PyrapImage(path, mode)

	A CASA-format image loaded with the ‘pyrap’ Python module.

	
class pwkit.astimage.FITSImage(path, mode)

	A FITS format image.

	
class pwkit.astimage.SimpleImage(parent)

	A 2D, latitude/longitude image, referenced to a parent image.

The Bayesian Blocks algorithm (pwkit.bblocks)

pwkit.bblocks - Bayesian Blocks analysis, with a few extensions.

Bayesian Blocks analysis for the “time tagged” case described by Scargle+
2013. Inspired by the bayesian_blocks implementation by Jake Vanderplas in the
AstroML package, but that turned out to have some limitations.

We have iterative determination of the best number of blocks (using an ad-hoc
routine described in Scargle+ 2013) and bootstrap-based determination of
uncertainties on the block heights (ditto).

Functions are:

	bin_bblock()

	Bayesian Blocks analysis with counts and bins.

	tt_bblock()

	BB analysis of time-tagged events.

	bs_tt_bblock()

	Like tt_bblock() with bootstrap-based uncertainty assessment. NOTE:
the uncertainties are not very reliable!

	
pwkit.bblocks.bin_bblock(widths, counts, p0=0.05)

	Fundamental Bayesian Blocks algorithm. Arguments:

widths - Array of consecutive cell widths.
counts - Array of numbers of counts in each cell.
p0=0.05 - Probability of preferring solutions with additional bins.

Returns a Holder with:

blockstarts - Start times of output blocks.
counts - Number of events in each output block.
finalp0 - Final value of p0, after iteration to minimize nblocks.
nblocks - Number of output blocks.
ncells - Number of input cells/bins.
origp0 - Original value of p0.
rates - Event rate associated with each block.
widths - Width of each output block.

	
pwkit.bblocks.tt_bblock(tstarts, tstops, times, p0=0.05, intersect_with_bins=False)

	Bayesian Blocks for time-tagged events. Arguments:

	tstarts

	Array of input bin start times.

	tstops

	Array of input bin stop times.

	times

	Array of event arrival times.

	p0 = 0.05

	Probability of preferring solutions with additional bins.

	intersect_with_bins = False

	If true, intersect bblock bins with input bins; can result in more bins
than bblocks wants; they will have the same rate values.

Returns a Holder with:

	counts

	Number of events in each output block.

	finalp0

	Final value of p0, after iteration to minimize nblocks.

	ledges

	Times of left edges of output blocks.

	midpoints

	Times of midpoints of output blocks.

	nblocks

	Number of output blocks.

	ncells

	Number of input cells/bins.

	origp0

	Original value of p0.

	rates

	Event rate associated with each block.

	redges

	Times of right edges of output blocks.

	widths

	Width of each output block.

Bin start/stop times are best derived from a 1D Voronoi tesselation of the
event arrival times, with some kind of global observation start/stop time
setting the extreme edges. Or they can be set from “good time intervals”
if observations were toggled on or off as in an X-ray telescope.

If intersect_with_bins is True, the true Bayesian Blocks bins (BBBs) are
intersected with the “good time intervals” (GTIs) defined by the tstarts
and tstops variables. One GTI may contain multiple BBBs if the event
rate appears to change within the GTI, and one BBB may span multiple GTIs
if the event date does not appear to change between the GTIs. The
intersection will ensure that no BBB intervals cross the edge of a GTI. If
this would happen, the BBB is split into multiple, partially redundant
records. Each of these records will have the same value for the
counts, rates, and widths values. However, the ledges, redges,
and midpoints values will be recalculated. Note that in this mode, it is
not necessarily true that widths = ledges - redges as is usually the
case. When this flag is true, keep in mind that multiple bins are
therefore not necessarily independent statistical samples.

	
pwkit.bblocks.bs_tt_bblock(times, tstarts, tstops, p0=0.05, nbootstrap=512)

	Bayesian Blocks for time-tagged events with bootstrapping uncertainty
assessment. THE UNCERTAINTIES ARE NOT VERY GOOD! Arguments:

tstarts - Array of input bin start times.
tstops - Array of input bin stop times.
times - Array of event arrival times.
p0=0.05 - Probability of preferring solutions with additional bins.
nbootstrap=512 - Number of bootstrap runs to perform.

Returns a Holder with:

blockstarts - Start times of output blocks.
bsrates - Mean event rate in each bin from bootstrap analysis.
bsrstds - ~Uncertainty: stddev of event rate in each bin from bootstrap analysis.
counts - Number of events in each output block.
finalp0 - Final value of p0, after iteration to minimize nblocks.
ledges - Times of left edges of output blocks.
midpoints - Times of midpoints of output blocks.
nblocks - Number of output blocks.
ncells - Number of input cells/bins.
origp0 - Original value of p0.
rates - Event rate associated with each block.
redges - Times of right edges of output blocks.
widths - Width of each output block.

Constants in CGS units (pwkit.cgs)

pwkit.cgs - Physical constants in CGS.

Specifically, ESU-CGS im which the electron charge is measured in esu ≡
Franklin ≡ statcoulomb.

a0 - Bohr radius [cm]
alpha - Fine structure constant [ø]
arad - Radiation constant [erg/cm³/K⁴]
aupercm - AU per cm
c - Speed of light [cm/s]
cgsperjy - [erg/s/cm²/Hz] per Jy
cmperau - cm per AU
cmperpc - cm per parsec
conjaaev - eV/Angstrom conjugation factor: AA = conjaaev / eV [Å·eV]
e - electron charge [esu]
ergperev - erg per eV
euler - Euler’s constant (2.71828…) [ø]
evpererg - eV per erg
G - Gravitational constant [cm³/g/s²]
h - Planck’s constant [erg s]
hbar - Reduced Planck’s constant [erg·s]
jypercgs - Jy per [erg/s/cm²/Hz]
k - Boltzmann’s constant [erg/K]
lsun - Luminosity of the Sun [erg/s]
me - Mass of the electron [g]
mearth - Mass of the Earth [g]
mjup - Mass of Jupiter [g]
mp - Mass of the proton [g]
msun - Mass of the Sun [g]
mu_e - Magnetic moment of the electron [esu·cm²/s]
pcpercm - parsec per cm
pi - Pi [ø]
r_e - Classical radius of the electron [cm]
rearth - Radius of the earth [cm]
rjup - Radius of Jupiter [cm]
rsun - Radius of the Sun [cm]
ryd1 - Rydberg energy [erg]
sigma - Stefan-Boltzmann constant [erg/s/K⁴]
sigma_T - Thomson cross section of the electron [cm²]
spersyr - Seconds per sidereal year
syrpers - Sidereal years per second
tsun - Effective temperature of the Sun [K]

Functions:

blambda - Planck function (Hz, K) -> erg/s/cm²/Hz/sr.
bnu - Planck function (cm, K) -> erg/s/cm²/cm/sr.
exp - Numpy exp() function.
log - Numpy log() function.
log10 - Numpy log10() function.
sqrt - Numpy sqrt() function.

For reference: the esu has dimensions of g^(1/2) cm^(3/2) s^-1. Electric and
magnetic field have g^(1/2) cm^(-1/2) s^-1. [esu * field] = dyne.

Simple synchrotron radiation emission coefficients (pwkit.dulk_models)

Model radio-wavelength radiative transfer using the Dulk (1985) equations.

Note that the gyrosynchrotron and relativistic synchrotron expressions can
give very different answers! For s=20, delta=3, theta=0.7, the results
differ by three orders of magnitude for η! The paper is a bit vague but
mentions that the gyrosynchrotron case is when “γ <~ 2 or 3”. The synchrotron
functions give results compatible with Symphony/Rimphony; the gyrosynchrotron
ones do not, although I’ve only tentatively explored what happens if you given
Symphony/Rimphony very low cuts on their gamma values.

The models are from Dulk (1985; 1985ARA&A..23..169D;
doi:10.1146/annurev.aa.23.090185.001125). There are three versions:

	Free-free emission

	Gyrosynchrotron emission

	Relativistic synchrotron emission

	Helpers

Free-free emission

	calc_freefree_kappa(ne, t, hz)

	Dulk (1985) eq 20, assuming pure hydrogen.

	calc_freefree_eta(ne, t, hz)

	Dulk (1985) equations 7 and 20, assuming pure hydrogen.

	calc_freefree_snu_ujy(ne, t, width, …)

	Calculate a flux density from pure free-free emission.

	
pwkit.dulk_models.calc_freefree_kappa(ne, t, hz)

	Dulk (1985) eq 20, assuming pure hydrogen.

	
pwkit.dulk_models.calc_freefree_eta(ne, t, hz)

	Dulk (1985) equations 7 and 20, assuming pure hydrogen.

	
pwkit.dulk_models.calc_freefree_snu_ujy(ne, t, width, elongation, dist, ghz)

	Calculate a flux density from pure free-free emission.

Gyrosynchrotron emission

	calc_gs_kappa(b, ne, delta, sinth, nu)

	Calculate the gyrosynchrotron absorption coefficient κ_ν.

	calc_gs_eta(b, ne, delta, sinth, nu)

	Calculate the gyrosynchrotron emission coefficient η_ν.

	calc_gs_snu_ujy(b, ne, delta, sinth, width, …)

	Calculate a flux density from pure gyrosynchrotron emission.

	
pwkit.dulk_models.calc_gs_kappa(b, ne, delta, sinth, nu)

	Calculate the gyrosynchrotron absorption coefficient κ_ν.

This is Dulk (1985) equation 36, which is a fitting function assuming a
power-law electron population. Arguments are:

	b

	Magnetic field strength in Gauss

	ne

	The density of electrons per cubic centimeter with energies greater than 10 keV.

	delta

	The power-law index defining the energy distribution of the electron population,
with n(E) ~ E^(-delta). The equation is valid for 2 <~ delta <~ 7.

	sinth

	The sine of the angle between the line of sight and the magnetic field direction.
The equation is valid for θ > 20° or sinth > 0.34 or so.

	nu

	The frequency at which to calculate η, in Hz. The equation is valid for
10 <~ nu/nu_b <~ 100, which sets a limit on the ratio of nu and b.

The return value is the absorption coefficient, in units of cm^-1.

No complaints are raised if you attempt to use the equation outside of its
range of validity.

	
pwkit.dulk_models.calc_gs_eta(b, ne, delta, sinth, nu)

	Calculate the gyrosynchrotron emission coefficient η_ν.

This is Dulk (1985) equation 35, which is a fitting function assuming a
power-law electron population. Arguments are:

	b

	Magnetic field strength in Gauss

	ne

	The density of electrons per cubic centimeter with energies greater than 10 keV.

	delta

	The power-law index defining the energy distribution of the electron population,
with n(E) ~ E^(-delta). The equation is valid for 2 <~ delta <~ 7.

	sinth

	The sine of the angle between the line of sight and the magnetic field direction.
The equation is valid for θ > 20° or sinth > 0.34 or so.

	nu

	The frequency at which to calculate η, in Hz. The equation is valid for
10 <~ nu/nu_b <~ 100, which sets a limit on the ratio of nu and b.

The return value is the emission coefficient (AKA “emissivity”), in units
of erg s^-1 Hz^-1 cm^-3 sr^-1.

No complaints are raised if you attempt to use the equation outside of its
range of validity.

	
pwkit.dulk_models.calc_gs_snu_ujy(b, ne, delta, sinth, width, elongation, dist, ghz)

	Calculate a flux density from pure gyrosynchrotron emission.

This combines Dulk (1985) equations 35 and 36, which are fitting functions
assuming a power-law electron population, with standard radiative transfer
through a uniform medium. Arguments are:

	b

	Magnetic field strength in Gauss

	ne

	The density of electrons per cubic centimeter with energies greater than 10 keV.

	delta

	The power-law index defining the energy distribution of the electron population,
with n(E) ~ E^(-delta). The equation is valid for 2 <~ delta <~ 7.

	sinth

	The sine of the angle between the line of sight and the magnetic field direction.
The equation is valid for θ > 20° or sinth > 0.34 or so.

	width

	The characteristic cross-sectional width of the emitting region, in cm.

	elongation

	The the elongation of the emitting region; depth = width * elongation.

	dist

	The distance to the emitting region, in cm.

	ghz

	The frequencies at which to evaluate the spectrum, in GHz.

The return value is the flux density in μJy. The arguments can be
Numpy arrays.

No complaints are raised if you attempt to use the equations outside of
their range of validity.

Relativistic synchrotron emission

	calc_synch_kappa(b, ne, delta, sinth, nu[, E0])

	Calculate the relativstic synchrotron absorption coefficient κ_ν.

	calc_synch_eta(b, ne, delta, sinth, nu[, E0])

	Calculate the relativistic synchrotron emission coefficient η_ν.

	calc_synch_snu_ujy(b, ne, delta, sinth, …)

	Calculate a flux density from pure gyrosynchrotron emission.

	
pwkit.dulk_models.calc_synch_kappa(b, ne, delta, sinth, nu, E0=1.0)

	Calculate the relativstic synchrotron absorption coefficient κ_ν.

This is Dulk (1985) equation 41, which is a fitting function assuming a
power-law electron population. Arguments are:

	b

	Magnetic field strength in Gauss

	ne

	The density of electrons per cubic centimeter with energies greater than E0.

	delta

	The power-law index defining the energy distribution of the electron population,
with n(E) ~ E^(-delta). The equation is valid for 2 <~ delta <~ 5.

	sinth

	The sine of the angle between the line of sight and the magnetic field direction.
It’s not specified for what range of values the expressions work well.

	nu

	The frequency at which to calculate η, in Hz. The equation is valid for
It’s not specified for what range of values the expressions work well.

	E0

	The minimum energy of electrons to consider, in MeV. Defaults to 1 so that
these functions can be called identically to the gyrosynchrotron functions.

The return value is the absorption coefficient, in units of cm^-1.

No complaints are raised if you attempt to use the equation outside of its
range of validity.

	
pwkit.dulk_models.calc_synch_eta(b, ne, delta, sinth, nu, E0=1.0)

	Calculate the relativistic synchrotron emission coefficient η_ν.

This is Dulk (1985) equation 40, which is an approximation assuming a
power-law electron population. Arguments are:

	b

	Magnetic field strength in Gauss

	ne

	The density of electrons per cubic centimeter with energies greater than E0.

	delta

	The power-law index defining the energy distribution of the electron population,
with n(E) ~ E^(-delta). The equation is valid for 2 <~ delta <~ 5.

	sinth

	The sine of the angle between the line of sight and the magnetic field direction.
It’s not specified for what range of values the expressions work well.

	nu

	The frequency at which to calculate η, in Hz. The equation is valid for
It’s not specified for what range of values the expressions work well.

	E0

	The minimum energy of electrons to consider, in MeV. Defaults to 1 so that
these functions can be called identically to the gyrosynchrotron functions.

The return value is the emission coefficient (AKA “emissivity”), in units
of erg s^-1 Hz^-1 cm^-3 sr^-1.

No complaints are raised if you attempt to use the equation outside of its
range of validity.

	
pwkit.dulk_models.calc_synch_snu_ujy(b, ne, delta, sinth, width, elongation, dist, ghz, E0=1.0)

	Calculate a flux density from pure gyrosynchrotron emission.

This combines Dulk (1985) equations 40 and 41, which are fitting functions
assuming a power-law electron population, with standard radiative transfer
through a uniform medium. Arguments are:

	b

	Magnetic field strength in Gauss

	ne

	The density of electrons per cubic centimeter with energies greater than 10 keV.

	delta

	The power-law index defining the energy distribution of the electron population,
with n(E) ~ E^(-delta). The equation is valid for 2 <~ delta <~ 5.

	sinth

	The sine of the angle between the line of sight and the magnetic field direction.
It’s not specified for what range of values the expressions work well.

	width

	The characteristic cross-sectional width of the emitting region, in cm.

	elongation

	The the elongation of the emitting region; depth = width * elongation.

	dist

	The distance to the emitting region, in cm.

	ghz

	The frequencies at which to evaluate the spectrum, in GHz.

	E0

	The minimum energy of electrons to consider, in MeV. Defaults to 1 so that
these functions can be called identically to the gyrosynchrotron functions.

The return value is the flux density in μJy. The arguments can be
Numpy arrays.

No complaints are raised if you attempt to use the equations outside of
their range of validity.

Helpers

	calc_nu_b(b)

	Calculate the cyclotron frequency in Hz given a magnetic field strength in Gauss.

	calc_snu(eta, kappa, width, elongation, dist)

	Calculate the flux density S_ν given a simple physical configuration.

	
pwkit.dulk_models.calc_nu_b(b)

	Calculate the cyclotron frequency in Hz given a magnetic field strength in Gauss.

This is in cycles per second not radians per second; i.e. there is a 2π in
the denominator: ν_B = e B / (2π m_e c)

	
pwkit.dulk_models.calc_snu(eta, kappa, width, elongation, dist)

	Calculate the flux density S_ν given a simple physical configuration.

This is basic radiative transfer as per Dulk (1985) equations 5, 6, and 11.

	eta

	The emissivity, in units of erg s^-1 Hz^-1 cm^-3 sr^-1.

	kappa

	The absorption coefficient, in units of cm^-1.

	width

	The characteristic cross-sectional width of the emitting region, in cm.

	elongation

	The the elongation of the emitting region; depth = width * elongation.

	dist

	The distance to the emitting region, in cm.

The return value is the flux density, in units of erg s^-1 cm^-2
Hz^-1. The angular size of the source is taken to be (width /
dist)**2.

Representations of and computations with ellipses (pwkit.ellipses)

pwkit.ellipses - utilities for manipulating 2D Gaussians and ellipses

XXXXXXX
XXX this code is in an incomplete state of being vectorized!!!
XXXXXXX

Useful for sources and bivariate error distributions. We can express the shape
of the function in several ways, which have different strengths and
weaknesses:

	“biv”, as in Gaussian bivariate: sigma x, sigma y, cov(x,y)

	“ell”, as in ellipse: major, minor, PA [*]

	“abc”: coefficients such that z = exp (ax² + bxy + cy²)

[*] Any slice through a 2D Gaussian is an ellipse. Ours is defined such it is
the same as a Gaussian bivariate when major = minor.

Note that when considering astronomical position angles, conventionally
defined as East from North, the Dec/lat axis should be considered the X axis
and the RA/long axis should be considered the Y axis.

	
pwkit.ellipses.sigmascale(nsigma)

	Say we take a Gaussian bivariate and convert the parameters of the
distribution to an ellipse (major, minor, PA). By what factor should we
scale those axes to make the area of the ellipse correspond to the n-sigma
confidence interval?

Negative or zero values result in NaN.

	
pwkit.ellipses.clscale(cl)

	Say we take a Gaussian bivariate and convert the parameters of the
distribution to an ellipse (major, minor, PA). By what factor should we
scale those axes to make the area of the ellipse correspond to the
confidence interval CL? (I.e. 0 < CL < 1)

	
pwkit.ellipses.bivell(sx, sy, cxy)

	Given the parameters of a Gaussian bivariate distribution, compute the
parameters for the equivalent 2D Gaussian in ellipse form (major, minor,
pa).

Inputs:

	sx: standard deviation (not variance) of x var

	sy: standard deviation (not variance) of y var

	cxy: covariance (not correlation coefficient) of x and y

Outputs:

	mjr: major axis of equivalent 2D Gaussian (sigma, not FWHM)

	mnr: minor axis

	pa: position angle, rotating from +x to +y

Lots of sanity-checking because it’s obnoxiously easy to have numerics
that just barely blow up on you.

	
pwkit.ellipses.bivnorm(sx, sy, cxy)

	Given the parameters of a Gaussian bivariate distribution, compute the
correct normalization for the equivalent 2D Gaussian. It’s 1 / (2 pi sqrt
(sx**2 sy**2 - cxy**2). This function adds a lot of sanity checking.

Inputs:

	sx: standard deviation (not variance) of x var

	sy: standard deviation (not variance) of y var

	cxy: covariance (not correlation coefficient) of x and y

Returns: the scalar normalization

	
pwkit.ellipses.bivabc(sx, sy, cxy)

	Compute nontrivial parameters for evaluating a bivariate distribution
as a 2D Gaussian. Inputs:

	sx: standard deviation (not variance) of x var

	sy: standard deviation (not variance) of y var

	cxy: covariance (not correlation coefficient) of x and y

Returns: (a, b, c), where z = k exp (ax² + bxy + cy²)

The proper value for k can be obtained from bivnorm().

	
pwkit.ellipses.databiv(xy, coordouter=False, **kwargs)

	Compute the main parameters of a bivariate distribution from data. The
parameters are returned in the same format as used in the rest of this
module.

	xy: a 2D data array of shape (2, nsamp) or (nsamp, 2)

	coordouter: if True, the coordinate axis is the outer axis; i.e.
the shape is (2, nsamp). Otherwise, the coordinate axis is the
inner axis; i.e. shape is (nsamp, 2).

Returns: (sx, sy, cxy)

In both cases, the first slice along the coordinate axis gives the X data
(i.e., xy[0] or xy[:,0]) and the second slice gives the Y data (xy[1] or
xy[:,1]).

	
pwkit.ellipses.bivrandom(x0, y0, sx, sy, cxy, size=None)

	Compute random values distributed according to the specified bivariate
distribution.

Inputs:

	x0: the center of the x distribution (i.e. its intended mean)

	y0: the center of the y distribution

	sx: standard deviation (not variance) of x var

	sy: standard deviation (not variance) of y var

	cxy: covariance (not correlation coefficient) of x and y

	size (optional): the number of values to compute

	Returns: array of shape (size, 2); or just (2,), if size was not

	specified.

The bivariate parameters of the generated data are approximately
recoverable by calling ‘databiv(retval)’.

	
pwkit.ellipses.ellpoint(mjr, mnr, pa, th)

	Compute a point on an ellipse parametrically. Inputs:

	mjr: major axis (sigma not FWHM) of the ellipse

	mnr: minor axis (sigma not FWHM) of the ellipse

	pa: position angle (from +x to +y) of the ellipse, radians

	th: the parameter, 0 <= th < 2pi: the eccentric anomaly

Returns: (x, y)

th may be a vector, in which case x and y will be as well.

	
pwkit.ellipses.elld2(x0, y0, mjr, mnr, pa, x, y)

	Given an 2D Gaussian expressed as an ellipse (major, minor, pa), compute a
“squared distance parameter” such that

z = exp (-0.5 * d2)

Inputs:

	x0: position of Gaussian center on x axis

	y0: position of Gaussian center on y axis

	mjr: major axis (sigma not FWHM) of the Gaussian

	mnr: minor axis (sigma not FWHM) of the Gaussian

	pa: position angle (from +x to +y) of the Gaussian, radians

	x: x coordinates of the locations for which to evaluate d2

	y: y coordinates of the locations for which to evaluate d2

Returns: d2, distance parameter defined as above.

x0, y0, mjr, and mnr may be in any units so long as they’re consistent. x
and y may be arrays (of the same shape), in which case d2 will be an array
as well.

	
pwkit.ellipses.ellbiv(mjr, mnr, pa)

	Given a 2D Gaussian expressed as an ellipse (major, minor, pa), compute the
equivalent parameters for a Gaussian bivariate distribution. We assume
that the ellipse is normalized so that the functions evaluate identicall
for major = minor.

Inputs:

	mjr: major axis (sigma not FWHM) of the Gaussian

	mnr: minor axis (sigma not FWHM) of the Gaussian

	pa: position angle (from +x to +y) of the Gaussian, radians

Returns:

	sx: standard deviation (not variance) of x var

	sy: standard deviation (not variance) of y var

	cxy: covariance (not correlation coefficient) of x and y

	
pwkit.ellipses.ellabc(mjr, mnr, pa)

	Given a 2D Gaussian expressed as an ellipse (major, minor, pa), compute the
nontrivial parameters for its evaluation.

	mjr: major axis (sigma not FWHM) of the Gaussian

	mnr: minor axis (sigma not FWHM) of the Gaussian

	pa: position angle (from +x to +y) of the Gaussian, radians

Returns: (a, b, c), where z = exp (ax² + bxy + cy²)

	
pwkit.ellipses.ellplot(mjr, mnr, pa)

	Utility for debugging.

	
pwkit.ellipses.abcell(a, b, c)

	Given the nontrivial parameters for evaluation a 2D Gaussian as a
polynomial, compute the equivalent ellipse parameters (major, minor, pa)

Inputs: (a, b, c), where z = exp (ax² + bxy + cy²)

Returns:

	mjr: major axis (sigma not FWHM) of the Gaussian

	mnr: minor axis (sigma not FWHM) of the Gaussian

	pa: position angle (from +x to +y) of the Gaussian, radians

	
pwkit.ellipses.abcd2(x0, y0, a, b, c, x, y)

	Given an 2D Gaussian expressed as the ABC polynomial coefficients, compute
a “squared distance parameter” such that

z = exp (-0.5 * d2)

Inputs:

	x0: position of Gaussian center on x axis

	y0: position of Gaussian center on y axis

	a: such that z = exp (ax² + bxy + cy²)

	b: see above

	c: see above

	x: x coordinates of the locations for which to evaluate d2

	y: y coordinates of the locations for which to evaluate d2

Returns: d2, distance parameter defined as above.

This is pretty trivial.

Run the Fleischman & Kuznetsov (2010) synchrotron code (pwkit.fk10)

This module helps you run the synchrotron code described in Fleischman &
Kuznetsov (2010; hereafter FK10) [DOI:10.1088/0004-637X/721/2/1127 [https://doi.org/10.1088/0004-637X/721/2/1127]]. The code is provided as a
precompiled binary module. It’s meant to be called from IDL, but we won’t let
that stop us!

The main interface to the code is the Calculator class. But before
you can use it, you must install the code, as described below.

Installing the code

To do anything useful with this module, you must first obtain the precompiled
module. This isn’t the sort of module you’d want to install into your system
shared libraries, so for applications you’ll probably be storing it in some
random directory. Therefore, all actions in this module start by specifying
the path to the library.

The module can be downloaded from as part of a Supplementary Data archive
attached to the journal paper. At the moment, the direct link is here [http://iopscience.iop.org/0004-637X/721/2/1127/suppdata/apj351391_sourcecode.tar.gz],
but that might change over time. The journal’s website for the paper [https://doi.org/10.1088/0004-637X/721/2/1127] should always have a link.

The archive contains compiled versions of the code for Windows, 32-bit Linux,
and 64-bit Linux. It is quite worrisome that maybe one day these files will
stop working, but that’s what we’ve got right now.

Anyway, you should download and unpack the archive and copy the desired file
to wherever makes the most sense for your software environment and
application. On 64-bit Linux, the file name is libGS_Std_HomSrc_CEH.so.64.
Any variable named shlib_path that comes up in the API should be a path to
this file. Note that relative paths should include a directory component (e.g.
./libGS_Std_HomSrc_CEH.so.64); the ctypes [https://docs.python.org/3/library/ctypes.html#module-ctypes] module treats bare
filenames specially.

	
class pwkit.fk10.Calculator(shlib_path)

	An interface to the FK10 synchrotron routines.

This class maintains state about the input parameters that can be passed
to the routines, and can invoke them for you.

Constructor arguments

	shlib_path

	The path to the compiled FK10 code, as described in the module-level
documentation.

Newly-constructed objects are initialized with:

self.set_hybrid_parameters(12, 12)
self.set_ignore_q_terms(False)
self.set_trapezoidal_integration(15)

Setting parameters

	set_bfield(B_G)

	Set the strength of the local magnetic field.

	set_bfield_for_s0(s0)

	Set B to probe a certain harmonic number.

	set_edist_powerlaw(emin_mev, emax_mev, …)

	Set the energy distribution function to a power law.

	set_edist_powerlaw_gamma(gmin, gmax, delta, …)

	Set the energy distribution function to a power law in the Lorentz factor

	set_freqs(n, f_lo_ghz, f_hi_ghz)

	Set the frequency grid on which to perform the calculations.

	set_hybrid_parameters(s_C, s_WH[, do_renorm])

	Set the hybrid/renormalization control parameters.

	set_ignore_q_terms(ignore_q_terms)

	Set whether “Q” terms are ignored.

	set_obs_angle(theta_rad)

	Set the observer angle relative to the field.

	set_one_freq(f_ghz)

	Set the code to calculate results at just one frequency.

	set_padist_gaussian_loss_cone(boundary_rad, …)

	Set the pitch-angle distribution to a Gaussian loss cone.

	set_padist_isotropic()

	Set the pitch-angle distribution to be isotropic.

	set_thermal_background(T_K, nth_cc)

	Set the properties of the background thermal plasma.

	set_trapezoidal_integration(n)

	Set the code to use trapezoidal integration.

Running calculations

	find_rt_coefficients([depth0])

	Figure out emission and absorption coefficients for the current parameters.

	find_rt_coefficients_tot_intens([depth0])

	Figure out total-intensity emission and absorption coefficients for the current parameters.

	
set_bfield(B_G)

	Set the strength of the local magnetic field.

Call signature

	B_G

	The magnetic field strength, in Gauss

	Returns

	self for convenience in chaining.

	
set_bfield_for_s0(s0)

	Set B to probe a certain harmonic number.

Call signature

	s0

	The harmonic number to probe at the lowest frequency

	Returns

	self for convenience in chaining.

This just proceeds from the relation nu = s nu_c = s e B / 2 pi m_e
c. Since s and nu scale with each other, if multiple frequencies
are being probed, the harmonic numbers being probed will scale in the
same way.

	
set_edist_powerlaw(emin_mev, emax_mev, delta, ne_cc)

	Set the energy distribution function to a power law.

Call signature

	emin_mev

	The minimum energy of the distribution, in MeV

	emax_mev

	The maximum energy of the distribution, in MeV

	delta

	The power-law index of the distribution

	ne_cc

	The number density of energetic electrons, in cm^-3.

	Returns

	self for convenience in chaining.

	
set_edist_powerlaw_gamma(gmin, gmax, delta, ne_cc)

	Set the energy distribution function to a power law in the Lorentz factor

Call signature

	gmin

	The minimum Lorentz factor of the distribution

	gmax

	The maximum Lorentz factor of the distribution

	delta

	The power-law index of the distribution

	ne_cc

	The number density of energetic electrons, in cm^-3.

	Returns

	self for convenience in chaining.

	
set_freqs(n, f_lo_ghz, f_hi_ghz)

	Set the frequency grid on which to perform the calculations.

Call signature

	n

	The number of frequency points to sample.

	f_lo_ghz

	The lowest frequency to sample, in GHz.

	f_hi_ghz

	The highest frequency to sample, in GHz.

	Returns

	self for convenience in chaining.

	
set_hybrid_parameters(s_C, s_WH, do_renorm=True)

	Set the hybrid/renormalization control parameters.

Call signature

	s_C

	The harmonic number above which the continuous approximation
is used (with special behavior; see below).

	s_WH

	The harmonic number above which the Wild-Hill BEssel function
approximations are used.

	do_renorm (default True)

	Whether to do any renormalization at all.

	Returns

	self for convenience in chaining.

FK10 uses frequency parameters f^C_cr and f^WH_cr to control some of
its optimizations. This function sets these parameters as multiples of
the electron cyclotron frequency (f_Be in FK10 notation): e.g.,
f^C_cr = s_C * f_Be.

At frequencies above f^C_cr, the “continuum” approximation is
introduced, replacing the “exact” sum with an integral. At frequencies
above f^WH_cr, the Wild-Hild approximations to the Bessel functions
are used. In both cases, the activation of the optimizations can
result in normalization shifts in the calculations. “Renormalization”
computes these shifts (by doing both kinds of calculations at the
transition frequencies) and attempts to correct them. (Some of the
FK10 documentation seems to refer to renormalization as
“R-optimization”.)

If f^C_cr is below the lowest frequency integrated, all calculations
will be done in continuum mode. In this case, the sign of s_C sets
whether Wild-Hill renormalization is applied. If s_C is negative and
f^WH_cr is above the lowest frequency integration, renormalization is
done. Otherwise, it is not.

The documentation regarding f^WH_cr is confusing. It states that
f^WH_cr only matters if (1) s_WH < s_C or (2) s_C < 0 and f^WH_cr >
f_0. It is not obvious to me why s_WH > s_C should only matter if s_C
< 0, but that’s what’s implied.

In most examples in FK10, both of these parameters are set to 12.

	
set_ignore_q_terms(ignore_q_terms)

	Set whether “Q” terms are ignored.

Call signature

	ignore_q_terms

	If true, ignore “Q” terms in the integrations.

	Returns

	self for convenience in chaining.

See Section 4.3 of FK10 and OnlineII.pdf in the Supplementary Data
for a precise explanation. The default is to not ignore the terms.

	
set_obs_angle(theta_rad)

	Set the observer angle relative to the field.

Call signature

	theta_rad

	The angle between the ray path and the local magnetic field,
in radians.

	Returns

	self for convenience in chaining.

	
set_one_freq(f_ghz)

	Set the code to calculate results at just one frequency.

Call signature

	f_ghz

	The frequency to sample, in GHz.

	Returns

	self for convenience in chaining.

	
set_padist_gaussian_loss_cone(boundary_rad, expwidth)

	Set the pitch-angle distribution to a Gaussian loss cone.

Call signature

	boundary_rad

	The angle inside which there are no losses, in radians.

	expwidth

	The characteristic width of the Gaussian loss profile
in direction-cosine units.

	Returns

	self for convenience in chaining.

See OnlineI.pdf in the Supplementary Data for a precise
definition. (And note the distinction between α_c and μ_c since not
everything is direction cosines.)

	
set_padist_isotropic()

	Set the pitch-angle distribution to be isotropic.

	Returns

	self for convenience in chaining.

	
set_thermal_background(T_K, nth_cc)

	Set the properties of the background thermal plasma.

Call signature

	T_K

	The temperature of the background plasma, in Kelvin.

	nth_cc

	The number density of thermal electrons, in cm^-3.

	Returns

	self for convenience in chaining.

Note that the parameters set here are the same as the ones that
describe the thermal electron distribution, if you choose one of the
electron energy distributions that explicitly models a thermal
component (“thm”, “tnt”, “tnp”, “tng”, “kappa” in the code’s
terminology). For the power-law-y electron distributions, these
parameters are used to calculate dispersion parameters (e.g.
refractive indices) and a free-free contribution, but their
synchrotron contribution is ignored.

	
set_trapezoidal_integration(n)

	Set the code to use trapezoidal integration.

Call signature

	n

	Use this many nodes

	Returns

	self for convenience in chaining.

	
find_rt_coefficients(depth0=None)

	Figure out emission and absorption coefficients for the current parameters.

Argument

	depth0 (default None)

	A first guess to use for a good integration depth, in cm. If None,
the most recent value is used.

Return value

A tuple (j_O, alpha_O, j_X, alpha_X), where:

	j_O

	The O-mode emission coefficient, in erg/s/cm^3/Hz/sr.

	alpha_O

	The O-mode absorption coefficient, in cm^-1.

	j_X

	The X-mode emission coefficient, in erg/s/cm^3/Hz/sr.

	alpha_X

	The X-mode absorption coefficient, in cm^-1.

The main outputs of the FK10 code are intensities and “damping
factors” describing a radiative transfer integration of the emission
from a homogeneous source. But there are times when we’d rather just
know what the actual emission and absorption coefficients are. These
can be backed out from the FK10 outputs, but only if the “damping
factor” takes on an intermediate value not extremely close to either 0
or 1. Unfortunately, there’s no way for us to know a priori what
choice of the “depth” parameter will yield a nice value for the
damping factor. This routine automatically figures one out, by
repeatedly running the calculation.

To keep things simple, this routine requires that you only be solving
for coefficients for one frequency at a time (e.g.,
set_one_freq()).

	
find_rt_coefficients_tot_intens(depth0=None)

	Figure out total-intensity emission and absorption coefficients for the
current parameters.

Argument

	depth0 (default None)

	A first guess to use for a good integration depth, in cm. If None,
the most recent value is used.

Return value

A tuple (j_I, alpha_I), where:

	j_I

	The total intensity emission coefficient, in erg/s/cm^3/Hz/sr.

	alpha_I

	The total intensity absorption coefficient, in cm^-1.

See find_rt_coefficients() for an explanation how this routine
works. This version merely postprocesses the results from that method
to convert the coefficients to refer to total intensity.

Modeling sources in images (pwkit.immodel)

pwkit.immodel - Analytical modeling of astronomical images.

This is derived from copl/pylib/bgfit.py and copl/bin/imsrcdebug. I keep on
wanting this code so I should put it somewhere more generic. Such as here.
Also, given the history, there are a lot more bells and whistles in the code
than the currently exposed UI really needs.

Bayesian confidence intervals for count rates (pwkit.kbn_conf)

pwkit.kbn_conf - calculate Poisson-like confidence intervals assuming a background

This module implements the Bayesian confidence intervals for Poisson processes
in a background using the approach described in Kraft, Burrows, & Nousek
(1991). That paper provides tables of values; this module can calculate
intervals for arbitrary inputs. Requires scipy.

This implementation almost directly transcribes the equations. We do, however,
work in log-gamma space to try to avoid overflows with large values of N or B.

Functions:

kbn_conf - Compute a single confidence limit.
vec_kbn_conf - Vectorized version of kbn_conf.

TODO: tests!

	
pwkit.kbn_conf.kbn_conf(N, B, CL)

	Given a (integer) number of observed Poisson events N and a (real)
expected number of background events B and a confidence limit CL
(between 0 and 1), return the confidence interval on the source event
rate.

Returns: (Smin, Smax)

This interval is calculated using the Bayesian formalism of Kraft, Burrows, &
Nousek (1991), which assumes no uncertainty in B and returns the smallest
possible interval that satisfies the above properties.

Example: in a certain time interval, 3 events were recorded. Based on
external knowledge, it is expected that on average 0.5 background events will
be recorded in the same interval. The 95% confidence interval on the source
event rate is

>>> kbn_conf.kbn_conf (3, 0.5, 0.95)
<<< (0.22156, 7.40188)

which agrees with the entry in Table 2 of KBN91.

Reference info: 1991ApJ…374..344K, doi:10.1086/170124

Nonlinear least-squares minimization with Levenberg-Marquardt (pwkit.lmmin)

pwkit.lmmin - Pythonic, Numpy-based Levenberg-Marquardt least-squares minimizer

Basic usage:

from pwkit.lmmin import Problem, ResidualProblem

def yfunc(params, vals):
 vals[:] = {stuff with params}
def jfunc(params, jac):
 jac[i,j] = {deriv of val[j] w.r.t. params[i]}
 # i.e. jac[i] = {deriv of val wrt params[i]}

p = Problem(npar, nout, yfunc, jfunc=None)
solution = p.solve(guess)

p2 = Problem()
p2.set_npar(npar) # enables configuration of parameter meta-info
p2.set_func(nout, yfunc, jfunc)

Main Solution properties:

prob - The Problem.
status - Set of strings; presence of ‘ftol’, ‘gtol’, or ‘xtol’ suggests success.
params - Final parameter values.
perror - 1σ uncertainties on params.
covar - Covariance matrix of parameters.
fnorm - Final norm of function output.
fvec - Final vector of function outputs.
fjac - Final Jacobian matrix of d(fvec)/d(params).

Automatic least-squares model-fitting (subtracts “observed” Y values and
multiplies by inverse errors):

	def yrfunc(params, modelyvalues):

	modelyvalues[:] = {stuff with params}

	def yjfunc(params, modelyjac):

	jac[i,j] = {deriv of modelyvalue[j] w.r.t. params[i]}

p.set_residual_func(yobs, errinv, yrfunc, jrfunc, reckless=False)
p = ResidualProblem(npar, yobs, errinv, yrfunc, jrfunc=None, reckless=False)

Parameter meta-information:

p.p_value(paramindex, value, fixed=False)
p.p_limit(paramindex, lower=-inf, upper=+inf)
p.p_step(paramindex, stepsize, maxstep=info, isrel=False)
p.p_side(paramindex, sidedness) # one of ‘auto’, ‘pos’, ‘neg’, ‘two’
p.p_tie(paramindex, tiefunc) # pval = tiefunc(params)

solve() status codes:

Solution.status is a set of strings. The presence of a string in the
set means that the specified condition was active when the iteration
terminated. Multiple conditions may contribute to ending the
iteration. The algorithm likely did not converge correctly if none of
‘ftol’, ‘xtol’, or ‘gtol’ are in status upon termination.

	‘ftol’ (MINPACK/MPFIT equiv: 1, 3)

	“Termination occurs when both the actual and predicted relative
reductions in the sum of squares are at most FTOL. Therefore, FTOL
measures the relative error desired in the sum of squares.”

	‘xtol’ (MINPACK/MPFIT equiv: 2, 3)

	“Termination occurs when the relative error between two consecutive
iterates is at most XTOL. Therefore, XTOL measures the relative
error desired in the approximate solution.”

	‘gtol’ (MINPACK/MPFIT equiv: 4)

	“Termination occurs when the cosine of the angle between fvec and
any column of the jacobian is at most GTOL in absolute
value. Therefore, GTOL measures the orthogonality desired between
the function vector and the columns of the jacobian.”

	‘maxiter’ (MINPACK/MPFIT equiv: 5)

	Number of iterations exceeds maxiter.

	‘feps’ (MINPACK/MPFIT equiv: 6)

	“ftol is too small. no further reduction in the sum of squares is
possible.”

	‘xeps’ (MINPACK/MPFIT equiv: 7)

	“xtol is too small. no further improvement in the approximate
solution x is possible.”

	‘geps’ (MINPACK/MPFIT equiv: 8)

	“gtol is too small. fvec is orthogonal to the columns of the jacobian
to machine precision.”

(This docstring contains only usage information. For important
information regarding provenance, license, and academic references,
see comments in the module source code.)

	
class pwkit.lmmin.Problem(npar=None, nout=None, yfunc=None, jfunc=None, solclass=<class 'pwkit.lmmin.Solution'>)

	A Levenberg-Marquardt problem to be solved. Attributes:

	damp

	Tanh damping factor of extreme function values.

	debug_calls

	If true, information about function calls is printed.

	debug_jac

	If true, information about jacobian calls is printed.

	diag

	Scale factors for parameter derivatives, used to condition
the problem.

	epsilon

	The floating-point epsilon value, used to determine step
sizes in automatic Jacobian computation.

	factor

	The step bound is factor times the initial value times diag.

	ftol

	The relative error desired in the sum of squares.

	gtol

	The orthogonality desired between the function vector and
the columns of the Jacobian.

	maxiter

	The maximum number of iterations allowed.

	normfunc

	A function to compute the norm of a vector.

	solclass

	A factory for Solution instances.

	xtol

	The relative error desired in the approximate solution.

Methods:

	copy

	Duplicate this Problem.

	get_ndof

	Get the number of degrees of freedom in the problem.

	get_nfree

	Get the number of free parameters (fixed/tied/etc pars are not free).

	p_value

	Set the initial or fixed value of a parameter.

	p_limit

	Set limits on parameter values.

	p_step

	Set the stepsize for a parameter.

	p_side

	Set the sidedness with which auto-derivatives are computed for a par.

	p_tie

	Set a parameter to be a function of other parameters.

	set_func

	Set the function to be optimized.

	set_npar

	Set the number of parameters; allows p_* to be called.

	set_residual_func

	Set the function to a standard model-fitting style.

	solve

	Run the algorithm.

	solve_scipy

	Run the algorithm using the Scipy implementation (for testing).

	
p_side(idx, sidedness)

	Acceptable values for sidedness are “auto”, “pos”,
“neg”, and “two”.

	
class pwkit.lmmin.Solution(prob)

	A parameter solution from the Levenberg-Marquard algorithm. Attributes:

ndof - The number of degrees of freedom in the problem.
prob - The Problem.
status - A set of strings indicating which stop condition(s) arose.
niter - The number of iterations needed to obtain the solution.
perror - The 1σ errors on the final parameters.
params - The final best-fit parameters.
covar - The covariance of the function parameters.
fnorm - The final function norm.
fvec - The final function outputs.
fjac - The final Jacobian.
nfev - The number of function evaluations needed to obtain the solution.
njev - The number of Jacobian evaluations needed to obtain the solution.

The presence of ‘ftol’, ‘gtol’, or ‘xtol’ in status suggests success.

Fitting generic models with least-squares minimization (pwkit.lsqmdl)

Model data with least-squares fitting

This module provides tools for fitting models to data using least-squares
optimization.

There are four basic approaches all offering a common programming interface:

	Generic Nonlinear Modeling

	One-dimensional Polynomial Modeling

	Modeling of a Single Scale Factor

	Modeling With Pluggable Components

	ModelBase(data[, invsigma])

	An abstract base class holding data and a model for least-squares fitting.

	Parameter(owner, index)

	Information about a parameter in a least-squares model.

	
class pwkit.lsqmdl.ModelBase(data, invsigma=None)

	An abstract base class holding data and a model for least-squares fitting.

The models implemented in this module all derive from this class and so
inherit the attributes and methods described below.

A Parameter data structure may be obtained by indexing this
object with either the parameter’s numerical index or its name. I.e.:

m = Model(...).solve(...)
p = m['slope']
print(p.name, p.value, p.uncert, p.uval)

	
chisq = None

	After fitting, the χ² of the fit.

	
covar = None

	After fitting, the variance-covariance matrix representing the parameter
uncertainties.

	
data = None

	The data to be modeled; an n-dimensional Numpy array.

	
invsigma = None

	Data weights: 1/σ for each data point.

	
make_frozen_func(params)

	Return a data-generating model function frozen at the specified parameters.

As with the mfunc attribute, the resulting function may or may
not take arguments depending on the particular kind of model being
evaluated.

	
mdata = None

	After fitting, the modeled data at the best parameters.

	
mfunc = None

	After fitting, a callable function evaluating the model fixed at best params.

The resulting function may or may not take arguments depending on the particular
kind of model being evaluated.

	
params = None

	After fitting, a Numpy ndarray of solved model parameters.

	
plot(modelx, dlines=False, xmin=None, xmax=None, ymin=None, ymax=None, **kwargs)

	Plot the data and model (requires omega).

This assumes that data is 1D and that mfunc takes one argument
that should be treated as the X variable.

	
pnames = None

	A list of textual names for the parameters.

	
print_soln()

	Print information about the model solution.

	
puncerts = None

	After fitting, a Numpy ndarray of 1σ uncertainties on the model parameters.

	
rchisq = None

	After fitting, the reduced χ² of the fit, or None if there are no degrees of freedom.

	
resids = None

	After fitting, the residuals: resids = data - mdata.

	
set_data(data, invsigma=None)

	Set the data to be modeled.

Returns self.

	
show_corr()

	Show the parameter correlation matrix with pwkit.ndshow_gtk3.

	
show_cov()

	Show the parameter covariance matrix with pwkit.ndshow_gtk3.

	
class pwkit.lsqmdl.Parameter(owner, index)

	Information about a parameter in a least-squares model.

These data may only be obtained after solving least-squares problem. These
objects reference information from their parent objects, so changing the
parent will alter the apparent contents of these objects.

	
index

	The parameter’s index in the Model’s arrays.

	
name

	The parameter’s name.

	
uncert

	The uncertainty in value.

	
uval

	Accesses value and uncert as a pwkit.msmt.Uval.

	
value

	The parameter’s value.

Generic Nonlinear Modeling

	Model(simple_func, data[, invsigma, args])

	Models data with a generic nonlinear optimizer

	Parameter(owner, index)

	Information about a parameter in a least-squares model.

	
class pwkit.lsqmdl.Model(simple_func, data, invsigma=None, args=())

	Models data with a generic nonlinear optimizer

Basic usage is:

def func(p1, p2, x):
 simulated_data = p1 * x + p2
 return simulated_data

x = [1, 2, 3]
data = [10, 14, 15.8]
mdl = Model(func, data, args=(x,)).solve(guess).print_soln()

The Model constructor can take an optional argument invsigma
after data; it specifies inverse sigmas, not inverse variances
(the usual statistical weights), for the data points. Since most
applications deal in sigmas, take care to write:

m = Model(func, data, 1. / uncerts) # right!

not:

m = Model(func, data, uncerts) # WRONG

If you have zero uncertainty on a measurement, you must wind a way to
express that constraint without including that measurement as part of the
data vector.

	
lm_prob = None

	A pwkit.lmmin.Problem instance describing the problem to be solved.

After setting up the data-generating function, you can access this item to
tune the solver.

	
make_frozen_func(params)

	Returns a model function frozen to the specified parameter values.

Any remaining arguments are left free and must be provided when the
function is called.

For this model, the returned function is the application of
functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial] to the func property of this object.

	
set_func(func, pnames, args=())

	Set the model function to use an efficient but tedious calling convention.

The function should obey the following convention:

def func(param_vec, *args):
 modeled_data = { do something using param_vec }
 return modeled_data

This function creates the pwkit.lmmin.Problem so that the
caller can futz with it before calling solve(), if so desired.

Returns self.

	
set_simple_func(func, args=())

	Set the model function to use a simple but somewhat inefficient calling
convention.

The function should obey the following convention:

def func(param0, param1, ..., paramN, *args):
 modeled_data = { do something using the parameters }
 return modeled_data

Returns self.

	
solve(guess)

	Solve for the parameters, using an initial guess.

This uses the Levenberg-Marquardt optimizer described in
pwkit.lmmin.

Returns self.

One-dimensional Polynomial Modeling

	
class pwkit.lsqmdl.PolynomialModel(maxexponent, x, data, invsigma=None)

	Least-squares polynomial fit.

Because this is a very specialized kind of problem, we don’t need an
initial guess to solve, and we can use fast built-in numerical routines.

The output parameters are named “a0”, “a1”, … and are stored in that
order in PolynomialModel.params[]. We have y = sum(x**i * a[i]), so
“a2” = “params[2]” is the quadratic term, etc.

This model does not give uncertainties on the derived coefficients. The
as_nonlinear() method can be use to get a Model instance with
uncertainties.

Methods:

as_nonlinear - Return a (lmmin-based) Model equivalent to self.

	
as_nonlinear(params=None)

	Return a Model equivalent to this object. The nonlinear solver is less
efficient, but lets you freeze parameters, compute uncertainties, etc.

If the params argument is provided, solve() will be called on the
returned object with those parameters. If it is None and this object
has parameters in self.params, those will be use. Otherwise, solve()
will not be called on the returned object.

	
make_frozen_func(params)

	Return a data-generating model function frozen at the specified parameters.

As with the mfunc attribute, the resulting function may or may
not take arguments depending on the particular kind of model being
evaluated.

Modeling of a Single Scale Factor

	
class pwkit.lsqmdl.ScaleModel(x, data, invsigma=None)

	Solve data = m * x for m.

	
make_frozen_func(params)

	Return a data-generating model function frozen at the specified parameters.

As with the mfunc attribute, the resulting function may or may
not take arguments depending on the particular kind of model being
evaluated.

Modeling With Pluggable Components

	ComposedModel(component, data[, invsigma])

	

	ModelComponent([name])

	

	AddConstantComponent([name])

	

	AddValuesComponent(nvals[, name])

	XXX terminology between this and AddConstant is mushy.

	AddPolynomialComponent(maxexponent, x[, name])

	

	SeriesComponent([components, name])

	Apply a set of subcomponents in series, isolating each from the other.

	MatMultComponent(k[, name])

	Given a component yielding k**2 data points and k additional components, each yielding n data points.

	ScaleComponent([subcomp, name])

	

	
class pwkit.lsqmdl.ComposedModel(component, data, invsigma=None)

	
	
debug_derivative(guess)

	returns (explicit, auto)

	
make_frozen_func()

	Return a data-generating model function frozen at the specified parameters.

As with the mfunc attribute, the resulting function may or may
not take arguments depending on the particular kind of model being
evaluated.

	
class pwkit.lsqmdl.ModelComponent(name=None)

	
	
deriv(pars, jac)

	Compute the Jacobian. jac[i] is d`mdata`/d`pars[i]`.

	
extract(pars, perr, cov)

	Extract fit results into the object for ease of inspection.

	
finalize_setup()

	If the component has subcomponents, this should set their name,
setguess, setvalue, and setlimit properties. It should also
set npar (on self) to the final value.

	
model(pars, mdata)

	Modify mdata based on pars.

	
prep_params()

	This should make any necessary calls to setvalue or setlimit,
though in straightforward cases it should just be up to the user to
do this. If the component has subcomponents, their prep_params
functions should be called.

	
class pwkit.lsqmdl.AddConstantComponent(name=None)

	
	
deriv(pars, jac)

	Compute the Jacobian. jac[i] is d`mdata`/d`pars[i]`.

	
extract(pars, perr, cov)

	Extract fit results into the object for ease of inspection.

	
model(pars, mdata)

	Modify mdata based on pars.

	
class pwkit.lsqmdl.AddValuesComponent(nvals, name=None)

	XXX terminology between this and AddConstant is mushy.

	
deriv(pars, jac)

	Compute the Jacobian. jac[i] is d`mdata`/d`pars[i]`.

	
extract(pars, perr, cov)

	Extract fit results into the object for ease of inspection.

	
model(pars, mdata)

	Modify mdata based on pars.

	
class pwkit.lsqmdl.AddPolynomialComponent(maxexponent, x, name=None)

	
	
deriv(pars, jac)

	Compute the Jacobian. jac[i] is d`mdata`/d`pars[i]`.

	
extract(pars, perr, cov)

	Extract fit results into the object for ease of inspection.

	
model(pars, mdata)

	Modify mdata based on pars.

	
class pwkit.lsqmdl.SeriesComponent(components=(), name=None)

	Apply a set of subcomponents in series, isolating each from the other. This
is only valid if every subcomponent except the first is additive –
otherwise, the Jacobian won’t be right.

	
add(component)

	This helps, but direct manipulation of self.components should be
supported.

	
deriv(pars, jac)

	Compute the Jacobian. jac[i] is d`mdata`/d`pars[i]`.

	
extract(pars, perr, cov)

	Extract fit results into the object for ease of inspection.

	
finalize_setup()

	If the component has subcomponents, this should set their name,
setguess, setvalue, and setlimit properties. It should also
set npar (on self) to the final value.

	
model(pars, mdata)

	Modify mdata based on pars.

	
prep_params()

	This should make any necessary calls to setvalue or setlimit,
though in straightforward cases it should just be up to the user to
do this. If the component has subcomponents, their prep_params
functions should be called.

	
class pwkit.lsqmdl.MatMultComponent(k, name=None)

	Given a component yielding k**2 data points and k additional components,
each yielding n data points. The result is [A]×[B], where A is the square
matrix formed from the first component’s output, and B is the (k, n)
matrix of stacked output from the final k components.

Parameters are ordered in same way as the components named above.

	
deriv(pars, jac)

	Compute the Jacobian. jac[i] is d`mdata`/d`pars[i]`.

	
extract(pars, perr, cov)

	Extract fit results into the object for ease of inspection.

	
finalize_setup()

	If the component has subcomponents, this should set their name,
setguess, setvalue, and setlimit properties. It should also
set npar (on self) to the final value.

	
model(pars, mdata)

	Modify mdata based on pars.

	
prep_params()

	This should make any necessary calls to setvalue or setlimit,
though in straightforward cases it should just be up to the user to
do this. If the component has subcomponents, their prep_params
functions should be called.

	
class pwkit.lsqmdl.ScaleComponent(subcomp=None, name=None)

	
	
deriv(pars, jac)

	Compute the Jacobian. jac[i] is d`mdata`/d`pars[i]`.

	
extract(pars, perr, cov)

	Extract fit results into the object for ease of inspection.

	
finalize_setup()

	If the component has subcomponents, this should set their name,
setguess, setvalue, and setlimit properties. It should also
set npar (on self) to the final value.

	
model(pars, mdata)

	Modify mdata based on pars.

	
prep_params()

	This should make any necessary calls to setvalue or setlimit,
though in straightforward cases it should just be up to the user to
do this. If the component has subcomponents, their prep_params
functions should be called.

Math with uncertain and censored measurements (pwkit.msmt)

pwkit.msmt - Working with uncertain measurements.

Classes:

Uval - An empirical uncertain value represented by numerical samples.
LimitError - Raised on illegal operations on upper/lower limits.
Lval - Container for either precise values or upper/lower limits.
Textual - A measurement recorded in textual form.

Generic unary functions on measurements:

absolute - abs(x)
arccos - As named.
arcsin - As named.
arctan - As named.
cos - As named.
errinfo - Get (limtype, repval, plus_1_sigma, minus_1_sigma)
expm1 - exp(x) - 1
exp - As named.
fmtinfo - Get (typetag, text, is_imprecise) for textual round-tripping.
isfinite - True if the value is well-defined and finite.
liminfo - Get (limtype, repval)
limtype - -1 if the datum is an upper limit; 1 if lower; 0 otherwise.
log10 - As named.
log1p - log(1+x)
log2 - As named.
log - As named.
negative - -x
reciprocal - 1/x
repval - Get a “representative” value if x (in case it is uncertain).
sin - As named.
sqrt - As named.
square - x**2
tan - As named.
unwrap - Get a version of x on which algebra can be performed.

Generic binary mathematical-ish functions:

add - x + y
divide - x / y, never with floor-integer division
floor_divide- x // y
multiply - x * y
power - x ** y
subtract - x - y
true_divide - x / y, never with floor-integer division
typealign - Return (x*, y*) cast to same algebra-friendly type: float, Uval, or Lval.

Miscellaneous functions:

is_measurement - Check whether an object is numerical
find_gamma_params - Compute reasonable Γ distribution parameters given mode/stddev.
pk_scoreatpercentile - Simplified version of scipy.stats.scoreatpercentile.
sample_double_norm - Sample from a quasi-normal distribution with asymmetric variances.
sample_gamma - Sample from a Γ distribution with α/β parametrization.

Variables:

lval_unary_math - Dict of unary math functions operating on Lvals.
parsers - Dict of type tag to parsing functions.
scalar_unary_math - Dict of unary math functions operating on scalars.
textual_unary_math - Dict of unary math functions operating on Textuals.
UQUANT_UNCERT - Scale of uncertainty assumed for in cases where it’s unquantified.
uval_default_repval_method - Default method for computing Uval representative values.
uval_dtype - The Numpy dtype of Uval data (often ignored!)
uval_nsamples - Number of samples used when constructing Uvals
uval_unary_math - Dict of unary math functions operating on Uvals.

	
exception pwkit.msmt.LimitError

	

	
class pwkit.msmt.Lval(kind, value)

	A container for either precise values or upper/lower limits. Constructed as
Lval(kind, value), where kind is "exact", "uncertain",
"toinf", "tozero", "pastzero", or "undef". Most easily
constructed via Textual.parse(). Can also be constructed with
Lval.from_other().

Supported operations are
unicode() str() repr() -(neg) abs() + - * / ** += -= *= /= **=.

	
class pwkit.msmt.Textual(tkind, dkind, data)

	A measurement recorded in textual form.

Textual.from_exact(text, tkind=’none’) - text is passed to float()
Textual.parse(text, tkind=’none’) - text as described below.

Transformation kinds are ‘none’, ‘log10’, or ‘positive’. Expressions for
values take the form ‘1.234’, ‘<2’, ‘>3’, ‘~7’, ‘6to8’, ‘7pm0.1’, or
‘12p1m0.3’.

Methods:

unparse() - Return parsed text (but not tkind!)
unwrap() - Express as float/Uval/Lval as appropriate.
repval(limitsok=False) - Get single scalar “representative” value.
limtype() - -1 if upper limit; +1 if lower; 0 otherwise.

Supported operations: unicode() str() repr() [latexification] -(neg) abs()
+ - * / **

	
limtype()

	Return -1 if this value is an upper limit, 1 if it is a lower
limit, 0 otherwise.

	
repval(limitsok=False)

	Get a best-effort representative value as a float. This can be
DANGEROUS because it discards limit information, which is rarely wise.

	
class pwkit.msmt.Uval(data)

	An empirical uncertain value, represented by samples.

Constructors are:

	Uval.from_other()

	Uval.from_fixed()

	Uval.from_norm()

	Uval.from_unif()

	Uval.from_double_norm()

	Uval.from_gamma()

	Uval.from_pcount()

Key methods are:

	repvals()

	text_pieces()

	format()

	debug_distribution()

Supported operations are:
unicode() str() repr() [latexification] + -(sub) * // / % ** += -= *= //= %= /= **= -(neg) ~ abs()

	
static from_pcount(nevents)

	We assume a Poisson process. nevents is the number of events in
some interval. The distribution of values is the distribution of the
Poisson rate parameter given this observed number of events, where the
“rate” is in units of events per interval of the same duration. The
max-likelihood value is nevents, but the mean value is nevents + 1.
The gamma distribution is obtained by assuming an improper, uniform
prior for the rate between 0 and infinity.

	
repvals(method)

	Compute representative statistical values for this Uval. method
may be either ‘pct’ or ‘gauss’.

Returns (best, plus_one_sigma, minus_one_sigma), where best is the
“best” value in some sense, and the others correspond to values at
the ~84 and 16 percentile limits, respectively. Because of the
sampled nature of the Uval system, there is no single method to
compute these numbers.

The “pct” method returns the 50th, 15.866th, and 84.134th percentile
values.

The “gauss” method computes the mean μ and standard deviation σ of the
samples and returns [μ, μ+σ, μ-σ].

	
text_pieces(method, uplaces=2, use_exponent=True)

	Return (main, dhigh, dlow, sharedexponent), all as strings. The
delta terms do not have sign indicators. Any item except the first
may be None.

method is passed to Uval.repvals() to compute representative
statistical limits.

	
pwkit.msmt.errinfo(msmt)

	Return (limtype, repval, errval1, errval2). Like m_liminfo, but also
provides error bar information for values that have it.

	
pwkit.msmt.fmtinfo(value)

	Returns (typetag, text, is_imprecise). Unlike other functions that operate
on measurements, this also operates on bools, ints, and strings.

	
pwkit.msmt.liminfo(msmt)

	Return (limtype, repval). limtype is -1 for upper limits, 1 for lower
limits, and 0 otherwise; repval is a best-effort representative scalar value
for this measurement.

	
pwkit.msmt.limtype(msmt)

	Return -1 if this value is some kind of upper limit, 1 if this value
is some kind of lower limit, 0 otherwise.

	
pwkit.msmt.repval(msmt, limitsok=False)

	Get a best-effort representative value as a float. This is DANGEROUS
because it discards limit information, which is rarely wise. m_liminfo()
or m_unwrap() are recommended instead.

	
pwkit.msmt.unwrap(msmt)

	Convert the value into the most basic representation that we can do
math on: float if possible, then Uval, then Lval.

	
pwkit.msmt.find_gamma_params(mode, std)

	Given a modal value and a standard deviation, compute corresponding
parameters for the gamma distribution.

Intended to be used to replace normal distributions when the value must be
positive and the uncertainty is comparable to the best value. Conversion
equations determined from the relations given in the sample_gamma()
docs.

	
pwkit.msmt.sample_double_norm(mean, std_upper, std_lower, size)

	Note that this function requires Scipy.

	
pwkit.msmt.sample_gamma(alpha, beta, size)

	This is mostly about recording the conversion between Numpy/Scipy
conventions and Wikipedia conventions. Some equations:

mean = alpha / beta
variance = alpha / beta**2
mode = (alpha - 1) / beta [if alpha > 1; otherwise undefined]
skewness = 2 / sqrt(alpha)

	
pwkit.msmt.UQUANT_UNCERT = 0.2

	Some values are known to be uncertain, but their uncertainties have not been
quantified. This is lame but it happens. In this case, assume a 20%
uncertainty.

We could infer uncertainties from the number of written digits: i.e., assuming
“1.2” is uncertain by 0.05 or so, while “1.2000” is uncertain by 0.00005 or
so. But there are many cases in astronomy where people just list values that
are 20% uncertain and give them to multiple decimal places. I’d rather be
conservative with these values than overly optimistic.

Code to do the appropriate parsing is in the Python uncertainties package, in
its __init__.py:parse_error_in_parentheses().

	
pwkit.msmt.uval_dtype

	alias of numpy.float64

Period-finding with Phase Dispersion Minimization (pwkit.pdm)

pwkit.pdm - period-finding with phase dispersion minimization

As defined in Stellingwerf (1978ApJ…224..953S). See the update in
Schwarzenberg-Czerny (1997ApJ…489..941S), however, which corrects the
significance test formally; Linnell Nemec & Nemec (1985AJ…..90.2317L)
provide a Monte Carlo approach. Also, Stellingwerf has developed “PDM2” which
attempts to improve a few aspects; see

	Stellingwerf’s page [http://www.stellingwerf.com/rfs-bin/index.cgi?action=PageView&id=29]

	The Wikipedia article [http://en.wikipedia.org/wiki/Phase_dispersion_minimization]

	
class pwkit.pdm.PDMResult(thetas, imin, pmin, mc_tmins, mc_pvalue, mc_pmins, mc_puncert)

	
	
imin

	Alias for field number 1

	
mc_pmins

	Alias for field number 5

	
mc_puncert

	Alias for field number 6

	
mc_pvalue

	Alias for field number 4

	
mc_tmins

	Alias for field number 3

	
pmin

	Alias for field number 2

	
thetas

	Alias for field number 0

	
pwkit.pdm.pdm(t, x, u, periods, nbin, nshift=8, nsmc=256, numc=256, weights=False, parallel=True)

	Perform phase dispersion minimization.

	t1D array

	time coordinate

	x1D array, same size as t

	observed value

	u1D array, same size as t

	uncertainty on observed value; same units as x

	periods1D array

	set of candidate periods to sample; same units as t

	nbinint

	number of phase bins to construct

	nshiftint=8

	number of shifted binnings to sample to combact statistical flukes

	nsmcint=256

	number of Monte Carlo shufflings to compute, to evaluate the
significance of the minimal theta value.

	numcint=256

	number of Monte Carlo added-noise datasets to compute, to evaluate
the uncertainty in the location of the minimal theta value.

	weightsbool=False

	if True, ‘u’ is actually weights, not uncertainties.
Usually weights = u**-2.

	paralleldefault True

	Controls parallelization of the algorithm. Default
uses all available cores. See pwkit.parallel.make_parallel_helper.

Returns named tuple of:

	thetas1D array

	values of theta statistic, same size as periods

	imin

	index of smallest (best) value in thetas

	pmin

	the period value with the smallest (best) theta

	mc_tmins

	1D array of size nsmc with Monte Carlo samplings of minimal
theta values for shufflings of the data; assesses significance of the peak

	mc_pvalue

	probability (between 0 and 1) of obtaining the best theta value
in a randomly-shuffled dataset

	mc_pmins

	1D array of size numc with Monte Carlo samplings of best
period values for noise-added data; assesses uncertainty of pmin

	mc_puncert

	standard deviation of mc_pmins; approximate uncertainty
on pmin.

We don’t do anything clever, so runtime scales at least as
t.size * periods.size * nbin * nshift * (nsmc + numc + 1).

Loading the outputs of PHOENIX atmospheric models (pwkit.phoenix)

pwkit.phoenix - Working with Phoenix atmospheric models.

Functions:

	load_spectrum - Load a model spectrum into a Pandas DataFrame.

Requires Pandas.

Individual data files for the BT-Settl models are about 120 MB, and there are
a million variations, so we do not consider bundling them with pwkit.
Therefore, we can safely expect that the model will be accessible as a path on
the filesystem.

Current BT-Settl models may be downloaded from a SPECTRA directory within the
BT-Settl download site [https://phoenix.ens-lyon.fr/Grids/BT-Settl/] (see the
README). E.g.:

https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011bc/SPECTRA/

File names are generally:

lte{Teff/100}-{Logg}{[M/H]}a[alpha/H].GRIDNAME.spec.7.[gz|bz2|xz]

The first three columns are wavelength in Å, log10(F_λ), and log10(B_λ), where
the latter is the blackbody flux for the given Teff. The fluxes can nominally
be converted into absolute units with an offset of 8 in log space, but I doubt
that can be trusted much. Subsequent columns are related to various spectral
lines. See https://phoenix.ens-lyon.fr/Grids/FORMAT .

The files do not come sorted!

	
pwkit.phoenix.load_spectrum(path, smoothing=181, DF=-8.0)

	Load a Phoenix model atmosphere spectrum.

	pathstring

	The file path to load.

	smoothinginteger

	Smoothing to apply. If None, do not smooth. If an integer, smooth with a
Hamming window. Otherwise, the variable is assumed to be a different
smoothing window, and the data will be convolved with it.

	DF: float

	Numerical factor used to compute the emergent flux density.

Returns a Pandas DataFrame containing the columns:

	wlen

	Sample wavelength in Angstrom.

	flam

	Flux density in erg/cm²/s/Å. See pwkit.synphot for related tools.

The values of flam returned by this function are computed from the
second column of the data file as specified in the documentation: flam =
10**(col2 + DF). The documentation states that the default value, -8, is
appropriate for most modern models; but some older models use other
values.

Loading takes about 5 seconds on my current laptop. Un-smoothed spectra
have about 630,000 samples.

Flux density models of radio calibrators (pwkit.radio_cal_models)

pwkit.radio_cal_models - models of radio calibrator flux densities.

From the command line:

python -m pwkit.radio_cal_models [-f] <source> <freq[mhz]>
python -m pwkit.radio_cal_models [-f] CasA <freq[mhz]> <year>

Print the flux density of the specified calibrator at the specified frequency,
in Janskys.

Arguments:

	<source>

	the source name (e.g., 3c348)

	<freq>

	the observing frequency in MHz (e.g., 1420)

	<year>

	is the decimal year of the observation (e.g., 2007.8).
Only needed if <source> is CasA.

	-f

	activates “flux” mode, where a three-item string is
printed that can be passed to MIRIAD tasks that accept a
model flux and spectral index argument.

	
pwkit.radio_cal_models.cas_a(freq_mhz, year)

	Return the flux of Cas A given a frequency and the year of observation.
Based on the formula given in Baars et al., 1977.

Parameters:

freq - Observation frequency in MHz.
year - Year of observation. May be floating-point.

Returns: s, flux in Jy.

	
pwkit.radio_cal_models.init_cas_a(year)

	Insert an entry for Cas A into the table of models. Need to specify the
year of the observations to account for the time variation of Cas A’s
emission.

Helpers for X-ray spectral modeling with the Sherpa packge (pwkit.sherpa)

This module contains helpers for modeling X-ray spectra with the Sherpa [http://cxc.harvard.edu/sherpa/] package.

This module includes a grab-bag of helpers in following broad topics:

	Additional Spectral Models

	Tools for Plotting with Sherpa Data Objects

	Data Structure Utilities

Additional Spectral Models

The pwkit.sherpa module provides several tools for constructing models
not provided in the standard Sherpa distribution.

	
class pwkit.sherpa.PowerLawApecDemModel(name, kt_array=None)

	A model with contributions from APEC plasmas at a range of
temperatures, scaling with temperature.

Constructor arguments are:

	name

	The Sherpa name of the resulting model instance.

	kt_array = None

	An array of temperatures to use for the plasma models. If left at the
default of None, a hard-coded default is used that spans temperatures of
~0.03 to 10 keV with logarithmic spacing.

The contribution at each temperature scales with kT as a power law. The
model parameters are:

	gfac

	The power-law normalization parameter. The contribution at temperature kT
is norm * kT**gfac.

	Abundanc

	The standard APEC abundance parameter.

	redshift

	The standard APEC redshift parameter.

	norm

	The standard overall normalization parameter.

This model is only efficient to compute if Abundanc and redshift are
frozen.

	
pwkit.sherpa.make_fixed_temp_multi_apec(kTs, name_template='apec%d', norm=None)

	Create a model summing multiple APEC components at fixed temperatures.

	kTs

	An iterable of temperatures for the components, in keV.

	name_template = ‘apec%d’

	A template to use for the names of each component; it is string-formatted
with the 0-based component number as an argument.

	norm = None

	An initial normalization to be used for every component, or None to use
the Sherpa default.

	Returns:

	A tuple (total_model, sub_models), where total_model is a Sherpa
model representing the sum of the APEC components and sub_models is
a list of the individual models.

This function creates a vector of APEC model components and sums them.
Their kT parameters are set and then frozen (using
sherpa.astro.ui.freeze()), so that upon exit from this function, the
amplitude of each component is the only free parameter.

Tools for Plotting with Sherpa Data Objects

	get_source_qq_data([id])

	Get data for a quantile-quantile plot of the source data and model.

	get_bkg_qq_data([id, bkg_id])

	Get data for a quantile-quantile plot of the background data and model.

	make_qq_plot(kev, obs, mdl, unit, key_text)

	Make a quantile-quantile plot comparing events and a model.

	make_multi_qq_plots(arrays, key_text)

	Make a quantile-quantile plot comparing multiple sets of events and models.

	make_spectrum_plot(model_plot, data_plot, desc)

	Make a plot of a spectral model and data.

	make_multi_spectrum_plots(model_plot, …[, …])

	Make a plot of multiple spectral models and data.

	
pwkit.sherpa.get_source_qq_data(id=None)

	Get data for a quantile-quantile plot of the source data and model.

	id

	The dataset id for which to get the data; defaults if unspecified.

	Returns:

	An ndarray of shape (3, npts). The first slice is the energy axis in
keV; the second is the observed values in each bin (counts, or rate, or
rate per keV, etc.); the third is the corresponding model value in each
bin.

The inputs are implicit; the data are obtained from the current state of
the Sherpa ui module.

	
pwkit.sherpa.get_bkg_qq_data(id=None, bkg_id=None)

	Get data for a quantile-quantile plot of the background data and model.

	id

	The dataset id for which to get the data; defaults if unspecified.

	bkg_id

	The identifier of the background; defaults if unspecified.

	Returns:

	An ndarray of shape (3, npts). The first slice is the energy axis in
keV; the second is the observed values in each bin (counts, or rate, or
rate per keV, etc.); the third is the corresponding model value in each
bin.

The inputs are implicit; the data are obtained from the current state of
the Sherpa ui module.

	
pwkit.sherpa.make_qq_plot(kev, obs, mdl, unit, key_text)

	Make a quantile-quantile plot comparing events and a model.

	kev

	A 1D, sorted array of event energy bins measured in keV.

	obs

	A 1D array giving the number or rate of events in each bin.

	mdl

	A 1D array giving the modeled number or rate of events in each bin.

	unit

	Text describing the unit in which obs and mdl are measured; will
be shown on the plot axes.

	key_text

	Text describing the quantile-quantile comparison quantity; will be
shown on the plot legend.

	Returns:

	An omega.RectPlot instance.

TODO: nothing about this is Sherpa-specific. Same goes for some of the
plotting routines in pkwit.environments.casa.data; might be
reasonable to add a submodule for generic X-ray-y plotting routines.

	
pwkit.sherpa.make_multi_qq_plots(arrays, key_text)

	Make a quantile-quantile plot comparing multiple sets of events and models.

	arrays

	
	

	key_text

	Text describing the quantile-quantile comparison quantity; will be
shown on the plot legend.

	Returns:

	An omega.RectPlot instance.

TODO: nothing about this is Sherpa-specific. Same goes for some of the
plotting routines in pkwit.environments.casa.data; might be
reasonable to add a submodule for generic X-ray-y plotting routines.

TODO: Some gross code duplication here.

	
pwkit.sherpa.make_spectrum_plot(model_plot, data_plot, desc, xmin_clamp=0.01, min_valid_x=None, max_valid_x=None)

	Make a plot of a spectral model and data.

	model_plot

	A model plot object returned by Sherpa from a call like ui.get_model_plot()
or ui.get_bkg_model_plot().

	data_plot

	A data plot object returned by Sherpa from a call like ui.get_source_plot()
or ui.get_bkg_plot().

	desc

	Text describing the origin of the data; will be shown in the plot legend
(with “Model” and “Data” appended).

	xmin_clamp

	The smallest “x” (energy axis) value that will be plotted; default is 0.01.
This is needed to allow the plot to be shown on a logarithmic scale if
the energy axes of the model go all the way to 0.

	min_valid_x

	Either None, or the smallest “x” (energy axis) value in which the model and
data are valid; this could correspond to a range specified in the “notice”
command during analysis. If specified, a gray band will be added to the plot
showing the invalidated regions.

	max_valid_x

	Like min_valid_x but for the largest “x” (energy axis) value in which the
model and data are valid.

	Returns:

	A tuple (plot, xlow, xhigh), where plot an OmegaPlot RectPlot
instance, xlow is the left edge of the plot bounds, and xhigh is the
right edge of the plot bounds.

	
pwkit.sherpa.make_multi_spectrum_plots(model_plot, plotids, data_getter, desc, xmin_clamp=0.01, min_valid_x=None, max_valid_x=None)

	Make a plot of multiple spectral models and data.

	model_plot

	A model plot object returned by Sherpa from a call like
ui.get_model_plot() or ui.get_bkg_model_plot().

	data_plots

	An iterable of data plot objects returned by Sherpa from calls like
ui.get_source_plot(id) or ui.get_bkg_plot(id).

	desc

	Text describing the origin of the data; will be shown in the plot legend
(with “Model” and “Data #<number>” appended).

	xmin_clamp

	The smallest “x” (energy axis) value that will be plotted; default is 0.01.
This is needed to allow the plot to be shown on a logarithmic scale if
the energy axes of the model go all the way to 0.

	min_valid_x

	Either None, or the smallest “x” (energy axis) value in which the model and
data are valid; this could correspond to a range specified in the “notice”
command during analysis. If specified, a gray band will be added to the plot
showing the invalidated regions.

	max_valid_x

	Like min_valid_x but for the largest “x” (energy axis) value in which the
model and data are valid.

	Returns:

	A tuple (plot, xlow, xhigh), where plot an OmegaPlot RectPlot
instance, xlow is the left edge of the plot bounds, and xhigh is the
right edge of the plot bounds.

TODO: not happy about the code duplication with make_spectrum_plot()
but here we are.

Data Structure Utilities

	expand_rmf_matrix(rmf)

	Expand an RMF matrix stored in compressed form.

	derive_identity_arf(name, arf)

	Create an “identity” ARF that has uniform sensitivity.

	derive_identity_rmf(name, rmf)

	Create an “identity” RMF that does not mix energies.

	
pwkit.sherpa.expand_rmf_matrix(rmf)

	Expand an RMF matrix stored in compressed form.

	rmf

	An RMF object as might be returned by sherpa.astro.ui.get_rmf().

	Returns:

	A non-sparse RMF matrix.

The Response Matrix Function (RMF) of an X-ray telescope like Chandra can
be stored in a sparse format as defined in OGIP Calibration Memo
CAL/GEN/92-002 [https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html].
For visualization and analysis purposes, it can be useful to de-sparsify
the matrices stored in this way. This function does that, returning a
two-dimensional Numpy array.

	
pwkit.sherpa.derive_identity_arf(name, arf)

	Create an “identity” ARF that has uniform sensitivity.

	name

	The name of the ARF object to be created; passed to Sherpa.

	arf

	An existing ARF object on which to base this one.

	Returns:

	A new ARF1D object that has a uniform spectral response vector.

In many X-ray observations, the relevant background signal does not behave
like an astrophysical source that is filtered through the telescope’s
response functions. However, I have been unable to get current Sherpa
(version 4.9) to behave how I want when working with backround models that
are not filtered through these response functions. This function
constructs an “identity” ARF response function that has uniform sensitivity
as a function of detector channel.

	
pwkit.sherpa.derive_identity_rmf(name, rmf)

	Create an “identity” RMF that does not mix energies.

	name

	The name of the RMF object to be created; passed to Sherpa.

	rmf

	An existing RMF object on which to base this one.

	Returns:

	A new RMF1D object that has a response matrix that is as close to
diagonal as we can get in energy space, and that has a constant
sensitivity as a function of detector channel.

In many X-ray observations, the relevant background signal does not behave
like an astrophysical source that is filtered through the telescope’s
response functions. However, I have been unable to get current Sherpa
(version 4.9) to behave how I want when working with backround models that
are not filtered through these response functions. This function
constructs an “identity” RMF response matrix that provides the best
possible approximation of a passthrough “instrumental response”: it mixes
energies as little as possible and has a uniform sensitivity as a function
of detector channel.

Synthetic photometry (pwkit.synphot)

Synthetic photometry and database of instrumental bandpasses.

The basic structure is that we have a registry of bandpass info. You can use
it to create Bandpass objects that can perform various calculations,
especially the computation of synthetic photometry given a spectral model.
Some key attributes of each bandpass are pre-computed so that certain
operations can be done without needing to load the actual bandpass profile
(though so far none of these profiles are very large at all).

The bandpass definitions built into this module are:

	2MASS (JHK)

	Bessell (UBVRI)

	GALEX (NUV, FUV)

	LMIRCam on LBT

	MEarth

	Mauna Kea Observatory (MKO) (JHKLM)

	SDSS (u’ g’ r’ i’ z’)

	Swift (UVW1)

	WISE (1234)

Classes:

	AlreadyDefinedError(fmt, *args)

	Raised when re-registering bandpass info.

	Bandpass

	Computations regarding a particular filter bandpass.

	NotDefinedError(fmt, *args)

	Raised when needed bandpass info is unavailable.

	Registry()

	A registry of known bandpass properties.

Functions:

	get_std_registry()

	Get a Registry object pre-filled with information for standard telescopes.

Various internal utilities may be useful for reference but are not documented here.

Variables:

	builtin_registrars

	Hashtable of functions to register the builtin telescopes.

Example

from pwkit import synphot as ps, cgs as pc, msmt as pm
reg = ps.get_std_registry()
print(reg.telescopes()) # list known telescopes
print(reg.bands('2MASS')) # list known 2MASS bands
bp = reg.get('2MASS', 'Ks')
mag = 12.83
mjy = pm.repval(bp.mag_to_fnu(mag) * pc.jypercgs * 1e3)
print('%.2f mag is %.2f mjy in 2MASS/Ks' % (mag, mjy))

Conventions

It is very important to maintain consistent conventions throughout.

Wavelengths are measured in angstroms. Flux densities are either
per-wavelength (f_λ, “flam”) or per-frequency (f_ν, “fnu”). These are measured
in units of erg/s/cm²/Å and erg/s/cm²/Hz, respectively. Janskys can be
converted to f_ν by multiplying by cgs.cgsperjy. f_ν’s and f_λ’s can be
interconverted for a given filter if you know its “pivot wavelength”. Some of
the routines below show how to calculate this and do the conversion. “AB
magnitudes” can be directly converted to Janskys and, thus, f_ν’s.

Filter bandpasses can be expressed in two conventions: either “equal-energy”
(EE) or “quantum-efficiency” (QE). The former gives the response per unit
energy across the band, while the latter gives the response per photon. The EE
convention can be integrated directly against a model spectrum, so we store
all bandpasses internally in this convention. CCDs are photon-counting devices
and so their response curves are generally expressed in the QE convention.
Interconversion is easy: EE = QE * λ.

We don’t expect any particular normalization of bandpass response curves.

The “width” of a bandpass is not a well-defined quantity, but is often needed
for display purposes or approximate calculations. We use the locations of the
half-maximum points (in the EE convention) to define the band edges.

This module requires Scipy and Pandas. It doesn’t reeeeallllly need Pandas but
it’s convenient.

References

Casagrande & VandenBerg (2014; arxiv:1407.6095) has a lot of good stuff; see
also references therein.

References for specific bandpasses are given in their implementation
docstrings.

The Registry class

	
pwkit.synphot.get_std_registry()

	Get a Registry object pre-filled with information for standard
telescopes.

	
class pwkit.synphot.Registry

	A registry of known bandpass properties.

Instances of Registry have the following methods:

	bands(telescope)

	Return a list of bands associated with the specified telescope.

	get(telescope, band)

	Get a Bandpass object for a known telescope and filter.

	register_bpass(telescope, klass)

	Register a Bandpass class.

	register_halfmaxes(telescope, band, lower, upper)

	Register precomputed half-max points.

	register_pivot_wavelength(telescope, band, wlen)

	Register precomputed pivot wavelengths.

	telescopes()

	Return a list of telescopes known to this registry.

	
Registry.bands(telescope)

	Return a list of bands associated with the specified telescope.

	
Registry.get(telescope, band)

	Get a Bandpass object for a known telescope and filter.

	
Registry.register_bpass(telescope, klass)

	Register a Bandpass class.

	
Registry.register_halfmaxes(telescope, band, lower, upper)

	Register precomputed half-max points.

	
Registry.register_pivot_wavelength(telescope, band, wlen)

	Register precomputed pivot wavelengths.

	
Registry.telescopes()

	Return a list of telescopes known to this registry.

	
pwkit.synphot.builtin_registrars = {'2MASS': <function register_2mass>, 'Bessell': <function register_bessell>, 'GALEX': <function register_galex>, 'LBT': <function register_lbt>, 'MEarth': <function register_mearth>, 'MKO': <function register_mko>, 'SDSS': <function register_sdss>, 'Swift': <function register_swift>, 'WISE': <function register_wise>}

	Hashtable of functions to register the builtin telescopes.

The Bandpass class

	
class pwkit.synphot.Bandpass

	Computations regarding a particular filter bandpass.

The underlying bandpass shape is assumed to be sampled at discrete points.
It is stored in _data and loaded on-demand. The object is a Pandas
DataFrame containing at least the columns wlen and resp. The
former holds the wavelengths of the sample points, in Ångström and in
ascending order. The latter gives the response curve in the EE convention.
No particular normalization is assumed. Other columns may be present but
are not used generically.

Instances of Bandpass have the following attributes:

	band

	The name of this bandpass’ associated band.

	native_flux_kind

	Which kind of flux this bandpass is calibrated to: ‘flam’, ‘fnu’, or ‘none’.

	registry

	This object’s parent Registry instance.

	telescope

	The name of this bandpass’ associated telescope.

And the following methods:

	calc_halfmax_points()

	Calculate the wavelengths of the filter half-maximum values.

	calc_pivot_wavelength()

	Compute and return the bandpass’ pivot wavelength.

	halfmax_points()

	Get the bandpass’ half-maximum wavelengths.

	jy_to_flam(jy)

	Convert a f_ν flux density measured in Janskys to a f_λ flux density.

	mag_to_flam(mag)

	Convert a magnitude in this band to a f_λ flux density.

	mag_to_fnu(mag)

	Convert a magnitude in this band to a f_ν flux density.

	pivot_wavelength()

	Get the bandpass’ pivot wavelength.

	synphot(wlen, flam)

	wlen and flam give a tabulated model spectrum in wavelength and f_λ units.

	blackbody(T)

	Calculate the contribution of a blackbody through this filter.

Detailed descriptions of attributes

	
Bandpass.band = None

	The name of this bandpass’ associated band.

	
Bandpass.native_flux_kind = 'none'

	Which kind of flux this bandpass is calibrated to: ‘flam’, ‘fnu’, or ‘none’.

	
Bandpass.registry = None

	This object’s parent Registry instance.

	
Bandpass.telescope = None

	The name of this bandpass’ associated telescope.

Detailed descriptions of methods

	
Bandpass.calc_halfmax_points()

	Calculate the wavelengths of the filter half-maximum values.

	
Bandpass.calc_pivot_wavelength()

	Compute and return the bandpass’ pivot wavelength.

This value is computed directly from the bandpass data, not looked up
in the Registry. Most of the values in the Registry were in fact
derived from this function originally.

	
Bandpass.halfmax_points()

	Get the bandpass’ half-maximum wavelengths. These can be used to
compute a representative bandwidth, or for display purposes.

Unlike calc_halfmax_points(), this function will use a cached value if
available.

	
Bandpass.jy_to_flam(jy)

	Convert a f_ν flux density measured in Janskys to a f_λ flux density.

This conversion is bandpass-dependent because it depends on the pivot
wavelength of the bandpass used to measure the flux density.

	
Bandpass.mag_to_flam(mag)

	Convert a magnitude in this band to a f_λ flux density.

It is assumed that the magnitude has been computed in the appropriate
photometric system. The definition of “appropriate” will vary from
case to case.

	
Bandpass.mag_to_fnu(mag)

	Convert a magnitude in this band to a f_ν flux density.

It is assumed that the magnitude has been computed in the appropriate
photometric system. The definition of “appropriate” will vary from
case to case.

	
Bandpass.pivot_wavelength()

	Get the bandpass’ pivot wavelength.

Unlike calc_pivot_wavelength(), this function will use a cached
value if available.

	
Bandpass.synphot(wlen, flam)

	wlen and flam give a tabulated model spectrum in wavelength and f_λ
units. We interpolate linearly over both the model and the bandpass
since they’re both discretely sampled.

Note that quadratic interpolation is both much slower and can blow up
fatally in some cases. The latter issue might have to do with really large
X values that aren’t zero-centered, maybe?

I used to use the quadrature integrator, but Romberg doesn’t issue
complaints the way quadrature did. I should probably acquire some idea
about what’s going on under the hood.

	
Bandpass.blackbody(T)

	Calculate the contribution of a blackbody through this filter. T is the
blackbody temperature in Kelvin. Returns a band-averaged spectrum in
f_λ units.

We use the composite Simpson’s rule to integrate over the points at
which the filter response is sampled. Note that this is a different
technique than used by synphot, and so may give slightly different
answers than that function.

Simple, careful conversions

	fnu_cgs_to_flam_ang(fnu_cgs, pivot_angstrom)

	erg/s/cm²/Hz → erg/s/cm²/Å

	flam_ang_to_fnu_cgs(flam_ang, pivot_angstrom)

	erg/s/cm²/Å → erg/s/cm²/Hz

	abmag_to_fnu_cgs(abmag)

	Convert an AB magnitude to f_ν in erg/s/cm²/Hz.

	abmag_to_flam_ang(abmag, pivot_angstrom)

	Convert an AB magnitude to f_λ in erg/s/cm²/Å.

	ghz_to_ang(ghz)

	Convert a photon frequency in GHz to its wavelength in Ångström.

	flat_ee_bandpass_pivot_wavelength(wavelen1, …)

	Compute the pivot wavelength of a bandpass that’s flat in equal-energy terms.

	pivot_wavelength_ee(bpass)

	Compute pivot wavelength assuming equal-energy convention.

	pivot_wavelength_qe(bpass)

	Compute pivot wavelength assuming quantum-efficiency convention.

	
pwkit.synphot.fnu_cgs_to_flam_ang(fnu_cgs, pivot_angstrom)

	erg/s/cm²/Hz → erg/s/cm²/Å

	
pwkit.synphot.flam_ang_to_fnu_cgs(flam_ang, pivot_angstrom)

	erg/s/cm²/Å → erg/s/cm²/Hz

	
pwkit.synphot.abmag_to_fnu_cgs(abmag)

	Convert an AB magnitude to f_ν in erg/s/cm²/Hz.

	
pwkit.synphot.abmag_to_flam_ang(abmag, pivot_angstrom)

	Convert an AB magnitude to f_λ in erg/s/cm²/Å. AB magnitudes are f_ν
quantities, so a pivot wavelength is needed.

	
pwkit.synphot.ghz_to_ang(ghz)

	Convert a photon frequency in GHz to its wavelength in Ångström.

	
pwkit.synphot.flat_ee_bandpass_pivot_wavelength(wavelen1, wavelen2)

	Compute the pivot wavelength of a bandpass that’s flat in equal-energy
terms. It turns out to be their harmonic mean.

	
pwkit.synphot.pivot_wavelength_ee(bpass)

	Compute pivot wavelength assuming equal-energy convention.

bpass should have two properties, resp and wlen. The units of wlen
can be anything, and resp need not be normalized in any particular way.

	
pwkit.synphot.pivot_wavelength_qe(bpass)

	Compute pivot wavelength assuming quantum-efficiency convention. Note that
this is NOT what we generally use in this module.

bpass should have two properties, resp and wlen. The units of wlen
can be anything, and resp need not be normalized in any particular way.

Exceptions

	AlreadyDefinedError(fmt, *args)

	Raised when re-registering bandpass info.

	NotDefinedError(fmt, *args)

	Raised when needed bandpass info is unavailable.

	
class pwkit.synphot.AlreadyDefinedError(fmt, *args)

	Raised when re-registering bandpass info.

	
class pwkit.synphot.NotDefinedError(fmt, *args)

	Raised when needed bandpass info is unavailable.

Scaling relations for physical properties of ultra-cool dwarfs (pwkit.ucd_physics)

pwkit.ucd_physics - Physical calculations for (ultra)cool dwarfs.

These functions generally implement various nontrivial physical relations
published in the literature. See docstrings for references.

Functions:

	bcj_from_spt

	J-band bolometric correction from SpT.

	bck_from_spt

	K-band bolometric correction from SpT.

	load_bcah98_mass_radius

	Load Baraffe+ 1998 mass/radius data.

	mass_from_j

	Mass from absolute J magnitude.

	mk_radius_from_mass_bcah98

	Radius from mass, using BCAH98 models.

	tauc_from_mass

	Convective turnover time from mass.

	
pwkit.ucd_physics.bcj_from_spt(spt)

	Calculate a bolometric correction constant for a J band magnitude based on
a spectral type, using the fit of Wilking+ (1999AJ….117..469W).

spt - Numerical spectral type. M0=0, M9=9, L0=10, …

Returns: the correction bcj such that m_bol = j_abs + bcj, or NaN if
spt is out of range.

Valid values of spt are between 0 and 10.

	
pwkit.ucd_physics.bck_from_spt(spt)

	Calculate a bolometric correction constant for a J band magnitude based on
a spectral type, using the fits of Wilking+ (1999AJ….117..469W), Dahn+
(2002AJ….124.1170D), and Nakajima+ (2004ApJ…607..499N).

spt - Numerical spectral type. M0=0, M9=9, L0=10, …

Returns: the correction bck such that m_bol = k_abs + bck, or NaN if
spt is out of range.

Valid values of spt are between 2 and 30.

	
pwkit.ucd_physics.load_bcah98_mass_radius(tablelines, metallicity=0, heliumfrac=0.275, age_gyr=5.0, age_tol=0.05)

	Load mass and radius from the main data table for the famous models of
Baraffe+ (1998A&A…337..403B).

	tablelines

	An iterable yielding lines from the table data file.
I’ve named the file ‘1998A&A…337..403B_tbl1-3.dat’
in some repositories (it’s about 150K, not too bad).

	metallicity

	The metallicity of the model to select.

	heliumfrac

	The helium fraction of the model to select.

	age_gyr

	The age of the model to select, in Gyr.

	age_tol

	The tolerance on the matched age, in Gyr.

Returns: (mass, radius), where both are Numpy arrays.

The ages in the data table vary slightly at fixed metallicity and helium
fraction. Therefore, there needs to be a tolerance parameter for matching
the age.

	
pwkit.ucd_physics.mass_from_j(j_abs)

	Estimate mass in cgs from absolute J magnitude, using the relationship of
Delfosse+ (2000A&A…364..217D).

j_abs - The absolute J magnitude.

Returns: the estimated mass in grams.

If j_abs > 11, a fixed result of 0.1 Msun is returned. Values of j_abs <
5.5 are illegal and get NaN. There is a discontinuity in the relation at
j_abs = 11, which yields 0.0824 Msun.

	
pwkit.ucd_physics.mk_radius_from_mass_bcah98(*args, **kwargs)

	Create a function that maps (sub)stellar mass to radius, based on the
famous models of Baraffe+ (1998A&A…337..403B).

	tablelines

	An iterable yielding lines from the table data file.
I’ve named the file ‘1998A&A…337..403B_tbl1-3.dat’
in some repositories (it’s about 150K, not too bad).

	metallicity

	The metallicity of the model to select.

	heliumfrac

	The helium fraction of the model to select.

	age_gyr

	The age of the model to select, in Gyr.

	age_tol

	The tolerance on the matched age, in Gyr.

Returns: a function mtor(mass_g), return a radius in cm as a function of a
mass in grams. The mass must be between 0.05 and 0.7 Msun.

The ages in the data table vary slightly at fixed metallicity and helium
fraction. Therefore, there needs to be a tolerance parameter for matching
the age.

This function requires Scipy.

	
pwkit.ucd_physics.tauc_from_mass(mass_g)

	Estimate the convective turnover time from mass, using the method described
in Cook+ (2014ApJ…785…10C).

mass_g - UCD mass in grams.

Returns: the convective turnover timescale in seconds.

Masses larger than 1.3 Msun are out of range and yield NaN. If the mass is
<0.1 Msun, the turnover time is fixed at 70 days.

The Cook method was inspired by the description in McLean+
(2012ApJ…746…23M). It is a hybrid of the method described in Reiners &
Basri (2010ApJ…710..924R) and the data shown in Kiraga & Stepien
(2007AcA….57..149K). However, this version imposes the 70-day cutoff in
terms of mass, not spectral type, so that it is entirely defined in terms
of a single quantity.

There are discontinuities between the different break points! Any future
use should tweak the coefficients to make everything smooth.

Command-line tools

This documentation has a lot of stubs.

	Quick astronomical calculations (astrotool)

	Quick operations on astronomical images (pwkit.cli.imtool)

	Single-command compilation of LaTeX documents (latexdriver)

	Wrap the output of a sub-program with extra information (wrapout)

Quick astronomical calculations (astrotool)

pwkit.cli.astrotool - the ‘astrotool’ program.

Quick operations on astronomical images (pwkit.cli.imtool)

pwkit.cli.imtool - the ‘imtool’ program.

Single-command compilation of LaTeX documents (latexdriver)

pwkit.cli.latexdriver - the ‘latexdriver’ program.

This used to be a nice little shell script, but for portability it’s better to
do this in Python. And now we can optionally provide some BibTeX-related
magic.

Wrap the output of a sub-program with extra information (wrapout)

pwkit.cli.wrapout - the ‘wrapout’ program.

Data Visualization

This documentation has a lot of stubs.

	Mapping arbitrary data to color scales (pwkit.colormaps)

	Tracing contours (pwkit.contours)

	Utilities for data visualization (pwkit.data_gui_helpers)

	Easy visualization of matrices with GTK+ version 2 (pwkit.ndshow_gtk2)

	Easy visualization of matrices with GTK+ version 3 (pwkit.ndshow_gtk3)

Mapping arbitrary data to color scales (pwkit.colormaps)

pwkit.colormaps – tools to conver arrays of real-valued data to other
formats (usually, RGB24) for visualization.

TODO: “heated body” map.

The main interface is the factory_map dictionary from colormap names to
factory functions. base_factory_names lists the names of a set of color
maps. Additional ones are available with the suffixes “_reverse” and “_sqrt”
that apply the relevant transforms.

The factory functions return another function, the “mapper”. Each mapper takes
a single argument, an array of values between 0 and 1, and returns the mapped
colors. If the input array has shape S, the returned value has a shape (S +
(3,)), with mapped[…,0] being the R values, between 0 and 1, etc.

Example:

data = np.array ([<things between 0 and 1>])
mapper = factory_map[‘cubehelix_blue’]()
rgb = mapper (data)
green_values = rgb[:,1]
last_rgb = rgb[-1]

The basic colormap names are:

	moreland_bluered

	Divergent colormap from intense blue (at 0) to intense red (at 1),
passing through white

	cubehelix_dagreen

	From black to white through rainbow colors

	cubehelix_blue

	From black to white, with blue hues

	pkgw

	From black to red, through purplish

	black_to_white, black_to_red, black_to_green, black_to_blue

	From black to the named colors.

	white_to_black, white_to_red, white_to_green, white_to_blue

	From white to the named colors.

The mappers can also take keyword arguments, including at least “transform”,
which specifies simple transforms that can be applied to the colormaps. These
are (in terms of symbolic constants and literal string values):

‘none’ - No transform (the default)
‘reverse’ - x -> 1 - x (reverses the colormap)
‘sqrt’ - x -> sqrt (x)

For each transform other than “none”, factory_map contains an entry with an
underscore and the transform name applied (e.g., “pkgw_reverse”) that has that
transform applied.

The initial inspiration was an implementation of the ideas in “Diverging Color
Maps for Scientific Visualization (Expanded)”, Kenneth Moreland,

http://www.cs.unm.edu/~kmorel/documents/ColorMaps/index.html

I’ve realized that I’m not too fond of the white mid-values in these color
maps in many cases. So I also added an implementation of the “cube helix”
color map, described by D. A. Green in

“A colour scheme for the display of astronomical intensity images”
http://adsabs.harvard.edu/abs/2011BASI…39..289G [http://adsabs.harvard.edu/abs/2011BASI...39..289G]
(D. A. Green, 2011 Bull. Ast. Soc. of India, 39 289)

I made up the pkgw map myself (who’d have guessed?).

Tracing contours (pwkit.contours)

pwkit.contours - Tracing contours in functions and data.

Uses my own homebrew algorithm. So far, it’s only tested on extremely
well-behaved functions, so probably doesn’t cope well with poorly-behaved
ones.

	
pwkit.contours.analytic_2d(f, df, x0, y0, maxiters=5000, defeta=0.05, netastep=12, vtol1=0.001, vtol2=1e-08, maxnewt=20, dorder=7, goright=False)

	Sample a contour in a 2D analytic function. Arguments:

	f

	A function, mapping (x, y) -> z.

	df

	The partial derivative: df (x, y) -> [dz/dx, dz/dy]. If None,
the derivative of f is approximated numerically with
scipy.derivative.

	x0

	Initial x value. Should be of “typical” size for the problem;
avoid 0.

	y0

	Initial y value. Should be of “typical” size for the problem;
avoid 0.

Optional arguments:

	maxiters

	Maximum number of points to create. Default 5000.

	defeta

	Initially offset by distances of defeta*[df/dx, df/dy]
Default 0.05.

	netastep

	Number of steps between defeta and the machine resolution
in which we test eta values for goodness. (OMG FIXME doc).
Default 12.

	vtol1

	Tolerance for constancy in the value of the function in the
initial offset step. The value is only allowed to vary by
f(x0,y0) * vtol1. Default 1e-3.

	vtol2

	Tolerance for constancy in the value of the function in the
along the contour. The value is only allowed to vary by
f(x0,y0) * vtol2. Default 1e-8.

	maxnewt

	Maximum number of Newton’s method steps to take when
attempting to hone in on the desired function value. Default 20.

	dorder

	Number of function evaluations to perform when evaluating
the derivative of f numerically. Must be an odd integer greater
than 1. Default 7.

	goright

	If True, trace the contour rightward (as looking uphill),
rather than leftward (the default).

Utilities for data visualization (pwkit.data_gui_helpers)

pwkit.data_gui_helpers - helpers for GUIs looking at data arrays

Classes:

Clipper - Map data into [0,1]
ColorMapper - Map data onto RGB colors using pwkit.colormaps
Stretcher - Map data within [0,1] using a stretch like sqrt, etc.

Functions:

data_to_argb32 - Turn arbitrary data values into ARGB32 colors.
data_to_imagesurface - Turn arbitrary data values into a Cairo ImageSurface.

	
pwkit.data_gui_helpers.data_to_argb32(data, cmin=None, cmax=None, stretch='linear', cmap='black_to_blue')

	Turn arbitrary data values into ARGB32 colors.

There are three steps to this process: clipping the data values to a
maximum and minimum; stretching the spacing between those values; and
converting their amplitudes into colors with some kind of color map.

	data - Input data; can (and should) be a MaskedArray if some values are

	invalid.

	cmin - The data clip minimum; all values <= cmin are treated

	identically. If None (the default), data.min() is used.

	cmax - The data clip maximum; all values >= cmax are treated

	identically. If None (the default), data.max() is used.

	stretch - The stretch function name; ‘linear’, ‘sqrt’, or ‘square’; see

	the Stretcher class.

	cmap - The color map name; defaults to ‘black_to_blue’. See the

	pwkit.colormaps module for more choices.

Returns a Numpy array of the same shape as data with dtype np.uint32,
which represents the ARGB32 colorized version of the data. If your
colormap is restricted to a single R or G or B channel, you can make color
images by bitwise-or’ing together different such arrays.

	
pwkit.data_gui_helpers.data_to_imagesurface(data, **kwargs)

	Turn arbitrary data values into a Cairo ImageSurface.

The method and arguments are the same as data_to_argb32, except that the
data array will be treated as 2D, and higher dimensionalities are not
allowed. The return value is a Cairo ImageSurface object.

Combined with the write_to_png() method on ImageSurfaces, this is an easy
way to quickly visualize 2D data.

	
class pwkit.data_gui_helpers.Stretcher(mode)

	Assumes that its inputs are in [0, 1]. Maps its outputs to the same
range.

	
offset_cbrt(dest)

	This stretch is useful when you have values that are symmetrical around
zero, and you want to enhance contrasts at small values while
preserving sign.

Easy visualization of matrices with GTK+ version 2 (pwkit.ndshow_gtk2)

Easy visualization of matrices with GTK+ version 3 (pwkit.ndshow_gtk3)

Data input and output

This documentation has a lot of stubs.

	Streaming output from other programs (pwkit.slurp)
	Slurper reference

	A simple “ini” file format (pwkit.inifile)

	Outputting data in LaTeX format (pwkit.latex)
	Classes

	Functions

	Helpers for TableBuilder

	Reading and writing data tables with types and uncertainties (pwkit.tabfile)

	An “ini” file format with typed, uncertain data (pwkit.tinifile)

	Converting Unicode to LaTeX notation (pwkit.unicode_to_latex)

Streaming output from other programs (pwkit.slurp)

The pwkit.slurp module makes it convenient to read output generated by
other programs. This is accomplished with a context-manager class known as
Slurper, which is built on top of the standard
subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] module.

The chief advantage of Slurper above subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] is
that it provides convenient, streaming access to subprogram output,
maintaining the distinction between “stdout” (standard output, written to file
descriptor #1) and “stderr” (standard error, written to file descriptor #2).
It can also forward signals to the child program.

Standard usage might look like:

from pwkit import slurp
argv = ['cat', '/etc/passwd']

with slurp.Slurper (argv, linebreak=True) as slurper:
 for etype, data in slurper:
 if etype == 'stdout':
 print ('got line:', data)

print ('exit code was:', slurper.proc.returncode)

Slurper is a context manager to ensure that the child process is
always cleaned up. Within the context manager body, you should iterate over
the Slurper instance to get a series of “event” 2-tuples consisting
of a Unicode string giving the event type, and the event data. Most, but not
all, events have to do with receiving data over the stdout or stderr pipes.
The events are:

	Event type

	Event data

	Description

	"stdout"

	The output

	Data were received from the subprogram’s standard output.

	"stderr"

	The output

	Data were received from the subprogram’s standard error.

	"forwarded-signal"

	The signal number

	This process received a signal and forwarded it to the child.

	"timeout"

	None

	No data were received from the child within a fixed timeout.

The data provided on the "stdout" and "stderr" events follow the usual
Python patterns for EOF. Namely, when either of those pipes is closed by the
subprocess, a final event is sent in which the data payload has zero length.
(It may be either a bytes object or a Unicode string depending on whether
decoding is enabled; see below.)

Warning

It is important to realize that programs that use the standard C
I/O routines, such as Python programs, buffer their output by default. The
pwkit.slurp module may appear to be having problems while really the
child program is batching up its output and writing it all at once. This
can be surprising because the default behavior is line-buffered when
stdout is connected to a TTY (as when you run programs in your
terminal), but buffered in large blocks when connected to a pipe (as when
using this module). On systems built on glibc, you can control this by
using the stdbuf program to launch your subprogram with different
buffering options. To run the command foo bar with both stdout and
stderr buffered at the line level, run stdbuf -oL -eL foo bar. To
disable buffering on both streams, run stdbuf -o0 -e0 foo bar.

	
class pwkit.slurp.Slurper(argv=None, env=None, cwd=None, propagate_signals=True, timeout=10, linebreak=False, encoding=None, stdin=slurp.Redirection.DevNull, stdout=slurp.Redirection.Pipe, stderr=slurp.Redirection.Pipe, executable=None)

	Construct a context manager used to read output from a subprogram. argv
is used to launch the subprogram using subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] with the
shell keyword set to False. env, cwd, executable, stdin,
stdout, and stderr are forwarded to the subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen]
constructor as well.

Regarding the redirection parameters stdin, stdout, and stderr, the
constants in the Redirection object gives more user-friendly names
to the analogues provided by the subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess] module, with the
addition of a Redirection.DevNull option emulating behavior added
in Python 3. Otherwise these values are passed to subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen]
verbatim, so you can use anyting that subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] would
accept. Keep in mind that you can only fetch the subprogram’s output if one
or both of the output paramers are set to Redirection.Pipe!

If propagate_signals is true, signals received by the parent process will
be forwarded to the child process. This can be valuable to obtain correct
behavior on SIGINT, for instance. Forwarded signals are SIGHUP, SIGINT,
SIGQUIT, SIGTERM, SIGUSR1, and SIGUSR2. This is done by overwriting the
calling process’ Python signal handlers; the original handlers are restored
upon exit from the with-statement block.

If linebreak is true, output from the child process will be gathered into
whole lines (split by "\n") before being sent to the caller. The
newline characters will be discarded, making it impossible to tell whether
the final line of output ended with a newline or not.

If encoding is not None, a decoder will be created with
codecs.getincrementaldecoder() [https://docs.python.org/3/library/codecs.html#codecs.getincrementaldecoder] and the subprocess output will be
converted from bytes to Unicode before being returned to the calling
process.

timeout sets the timeout for the internal select.select() [https://docs.python.org/3/library/select.html#select.select] call used
to check for output from the subprogram. It is measured in seconds.

Slurper instances have attributes argv, env,
cwd, executable, propagate_signals,
:timeout, linebreak, attr:encoding, stdin,
:stdout, and stderr recording the construction parameters.

	
pwkit.slurp.Redirection

	An enum-like object defining ways to redirect the I/O streams of the
subprogram. These values are identical to those used in subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess]
but with nicer names.

	Constant

	Meaning

	Redirection.Pipe

	Pipe output to the calling program.

	Redirection.Stdout

	Only valid for stderr; merge it with stdout

	Redirection.DevNull

	Direct input from /dev/null, or output thereto.

The whole raison d’être of pwkit.slurp is to make it easy to
communicate output between programs, so you probably will probably want to
use Redirection.Pipe for stdout and stderr most of the time.

Slurper reference

	
Slurper.proc

	The subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] instance of the child program. After the
program has exited, you can access its exit code as
Slurper.proc.returncode.

	
Slurper.argv

	The argv of the program to be launched.

	
Slurper.env

	Environment dictionary for the program to be launched.

	
Slurper.cwd

	The working directory for the program to be launched.

	
Slurper.executable

	The name of the executable to launch (argv[0] is allowed to differ from
this).

	
Slurper.propagate_signals

	Whether to forward the subprogram any signals that are received by the
calling process.

	
Slurper.timeout

	The timeout (in seconds) for waiting for output from the child program. If
nothing is received, a "timeout" event is generated.

	
Slurper.linebreak

	Whether to gather the subprogram output into textual lines.

	
Slurper.encoding

	The encoding to be used to decode the subprogram output from bytes to Unicode,
or None if no such decoding is to be done.

	
Slurper.stdin

	How to redirect the standard input of the subprogram, if at all.

	
Slurper.stdout

	How to redirect the standard output of the subprogram, if at all. If not
Pipe, no "stdout" events will be received.

	
Slurper.stderr

	How to redirect the standard error of the subprogram, if at all. If not
Pipe, no "stderr" events will be received. If Stdout, events
that would have had a type of "stderr" will have a type of "stdout"
instead.

A simple “ini” file format (pwkit.inifile)

A simple parser for ini-style files that’s better than Python’s
ConfigParser/configparser.

Functions:

	read

	Generate a stream of pwkit.Holder instances from an ini-format file.

	mutate

	Rewrite an ini file chunk by chunk.

	write

	Write a stream of pwkit.Holder instances to an ini-format file.

	mutate_stream

	Lower-level version; only operates on streams, not path names.

	read_stream

	Lower-level version; only operates on streams, not path names.

	write_stream

	Lower-level version; only operates on streams, not path names.

	mutate_in_place

	Rewrite an ini file specififed by its path name, in place.

	
exception pwkit.inifile.InifileError(fmt, *args)

	

	
pwkit.inifile.mutate_stream(instream, outstream)

	Python 3 compat note: we’re assuming stream gives bytes not unicode.

	
pwkit.inifile.read_stream(stream)

	Python 3 compat note: we’re assuming stream gives bytes not unicode.

	
pwkit.inifile.write_stream(stream, holders, defaultsection=None)

	Very simple writing in ini format. The simple stringification of each value
in each Holder is printed, and no escaping is performed. (This is most
relevant for multiline values or ones containing pound signs.) None values are
skipped.

Arguments:

	stream

	A text stream to write to.

	holders

	An iterable of objects to write. Their fields will be
written as sections.

	defaultsection=None

	Section name to use if a holder doesn’t contain a
section field.

	
pwkit.inifile.write(stream_or_path, holders, **kwargs)

	Very simple writing in ini format. The simple stringification of each value
in each Holder is printed, and no escaping is performed. (This is most
relevant for multiline values or ones containing pound signs.) None values are
skipped.

Arguments:

	stream

	A text stream to write to.

	holders

	An iterable of objects to write. Their fields will be
written as sections.

	defaultsection=None

	Section name to use if a holder doesn’t contain a
section field.

Outputting data in LaTeX format (pwkit.latex)

pwkit.latex - various helpers for the LaTeX typesetting system.

Classes

	Referencer

	Accumulate a numbered list of bibtex references, then output them.

	TableBuilder

	Create awesome deluxetables programmatically.

Functions

	latexify_l3col

	Format value in LaTeX, suitable for tables of limit values.

	latexify_n2col

	Format a number in LaTeX in 2-column decimal-aligned formed.

	latexify_u3col

	Format value in LaTeX, suitable for tables of uncertain values.

	latexify

	Format a value in LaTeX appropriately.

Helpers for TableBuilder

	AlignedNumberFormatter

	Format numbers, aligning them at the decimal point.

	BasicFormatter

	Base class for formatters.

	BoolFormatter

	Format a boolean; default is True -> bullet, False -> nothing.

	LimitFormatter

	Format measurements for a table of limits.

	MaybeNumberFormatter

	Format numbers with a fixed number of decimal places, or
objects with __pk_latex__().

	UncertFormatter

	Format measurements for a table of detailed uncertainties.

	WideHeader

	Helper for multi-column headers.

XXX: Barely tested!

	
class pwkit.latex.AlignedNumberFormatter(nplaces=1)

	Format numbers. Allows the number of decimal places to be specified, and
aligns the numbers at the decimal point.

	
colinfo(builder)

	Return (nlcol, colspec, headprefix), where:

	nlcol - The number of LaTeX columns encompassed by this logical

	column.

	colspec - Its LaTeX column specification (None to force user to

	specify).

	headprefix - Prefix applied before heading items in {} (e.g.,

	“colhead”).

	
class pwkit.latex.BasicFormatter

	Base class for formatting table cells in a TableBuilder.

Generally a formatter will also provide methods for turning input data
into fancified LaTeX output that can be used by the column’s “data
function”.

	
colinfo(builder)

	Return (nlcol, colspec, headprefix), where:

	nlcol - The number of LaTeX columns encompassed by this logical

	column.

	colspec - Its LaTeX column specification (None to force user to

	specify).

	headprefix - Prefix applied before heading items in {} (e.g.,

	“colhead”).

	
class pwkit.latex.BoolFormatter

	Format booleans. Attributes truetext and falsetext set what shows up
for true and false values, respectively.

	
colinfo(builder)

	Return (nlcol, colspec, headprefix), where:

	nlcol - The number of LaTeX columns encompassed by this logical

	column.

	colspec - Its LaTeX column specification (None to force user to

	specify).

	headprefix - Prefix applied before heading items in {} (e.g.,

	“colhead”).

	
class pwkit.latex.LimitFormatter

	Format measurements (cf pwkit.msmt) with nice-looking limit information.
Specific uncertainty information is discarded. The default formats do not
involve fancy subscripts or superscripts, so row struts are not needed …
by default.

	
colinfo(builder)

	Return (nlcol, colspec, headprefix), where:

	nlcol - The number of LaTeX columns encompassed by this logical

	column.

	colspec - Its LaTeX column specification (None to force user to

	specify).

	headprefix - Prefix applied before heading items in {} (e.g.,

	“colhead”).

	
class pwkit.latex.MaybeNumberFormatter(nplaces=1, align='c')

	Format Python objects. If it’s a number, format it as such, without any
fancy column alignment, but with a specifiable number of decimal places.
Otherwise, call latexify() on it.

	
colinfo(builder)

	Return (nlcol, colspec, headprefix), where:

	nlcol - The number of LaTeX columns encompassed by this logical

	column.

	colspec - Its LaTeX column specification (None to force user to

	specify).

	headprefix - Prefix applied before heading items in {} (e.g.,

	“colhead”).

	
class pwkit.latex.Referencer

	Accumulate a numbered list of bibtex references. Methods:

	refkey(bibkey)

	Return a string that should be used to give
a numbered reference to the given bibtex
key. “thiswork” is handled specially.

	dump()

	Return a string with citet{} commands identifing
all of the numbered references.

Attributes:

	thisworktext

	text referring to “this work”; defaults to that.

	thisworkmarker

	special symbol used to denote “this work”; defaults to star.

Bibtex keys beginning with asterisks have the rest of their value used for
the citation text, rather than “citet{<key>}”.

	
class pwkit.latex.TableBuilder(label)

	Build and then emit a nice deluxetable.

Methods:

	addcol(headings, datafunc, formatter=None, colspec=None, numbering=’(%d)’)

	Define a logical column.

	addnote(key, text)

	Define a table note that can appear in cells.

	addhcline(headerrowix, logcolidx, latexdeltastart, latexdeltaend)

	Add a horizontal line between columns.

	notemark(key)

	Return a tablenotemark{} command for the specified note key.

	emit(stream, items)

	Write the table, with one row for each thing in items, to the stream.

If an item has an attribute tb_row_preamble, that text is written verbatim
before that corresponding row is output.

Attributes:

	environment

	The name of the latex environment to use, default “deluxetable”.
You may want to specify “deluxetable*”, or “mydeluxetable” if
using a hacked package.

	label

	The latex reference label of the table. Mandatory.

	note

	A note at the table footer (“tablecomments{}” in LaTeX).

	preamble

	Commands for table preamble. See below.

	refs

	Contents of the table References section.

	title

	Table title. Default “Untitled table”.

	widthspec

	Passed to tablewidth{}; default “0em” = auto-widen.

	numbercols

	If True, number each column. This can be disabled on a
col-by-col basis by calling addcol with numbering set to
False.

	final_double_backslash

	If True, end the final table row with a ‘’’’. AAStex6 requires this,
giving an error about a misplaced ‘omit’ if you don’t provide one.
On the other hand, classic TeX tables look worse if you do provide this.

Legal preamble commands are:

\rotate
\tablenum{<manual table identifier>}
\tabletypesize{}

The commands tablecaption, tablecolumns, tablehead, and tablewidth
are handled specially.

If tablewidth{} is not provided, the table is set at full width, not its
natural width, which is a lame default. The default widthspec lets us
auto-widen while providing a clear avenue to customizing the width.

	
addcol(headings, datafunc, formatter=None, colspec=None, numbering='(%d)')

	Define a logical column. Arguments:

	headings

	A string, or list of strings and WideHeaders. The headings are stacked
vertically in the table header section.

	datafunc

	Return LaTeX for this cell. Call spec should be
(item, [formatter, [tablebuilder]]).

	formatter

	The formatter to use; defaults to a new BasicFormatter.

	colspec

	The LaTeX column specification letters to use; defaults to ‘c’s.

	numbering

	If non-False, a format for writing this column’s number; if False,
no number is written.

	
addhcline(headerrowidx, logcolidx, latexdeltastart, latexdeltaend)

	Adds a horizontal line below a limited range of columns in the header section.
Arguments:

	headerrowidx - The 0-based row number below which the line will be

	drawn; i.e. 0 means that the line will be drawn below
the first row of header cells.

	logcolidx - The 0-based ‘logical’ column number relative to which

	the line will be placed; i.e. 1 means that the line
placement will be relative to the second column
defined in an addcol() call.

	latexdeltastart - The relative position at which to start drawing the

	line relative to that logical column, in LaTeX
columns; typically going to be zero.

	latexdeltaend - The relative position at which to finish drawing the

	line, in the standard Python noninclusive sense. I.e.,
if you want to underline two LaTeX columns,
latexdeltaend = latexdeltastart + 2.

	
class pwkit.latex.UncertFormatter

	Format measurements (cf. pwkit.msmt) with detailed uncertainty information,
possibly including asymmetric uncertainties. Because of the latter
possibility, table rows have to be made extra-high to maintain evenness.

	
colinfo(builder)

	Return (nlcol, colspec, headprefix), where:

	nlcol - The number of LaTeX columns encompassed by this logical

	column.

	colspec - Its LaTeX column specification (None to force user to

	specify).

	headprefix - Prefix applied before heading items in {} (e.g.,

	“colhead”).

	
class pwkit.latex.WideHeader(nlogcols, content, align='c')

	Information needed for constructing wide table headers.

nlogcols - Number of logical columns consumed by this header.
content - The LaTeX to insert for this header’s content.
align - The alignment of this header; default ‘c’.

Rendered as multicolumn{nlatex}{align}{content}, where nlatex is the
number of LaTeX columns spanned by this header – which may be larger than
nlogcols if certain logical columns span multiple LaTeX columns.

	
pwkit.latex.latexify_l3col(obj, **kwargs)

	Convert an object to special LaTeX for limit tables.

This conversion is meant for limit values in a table. The return value
should span three columns. The first column is the limit indicator: <, >,
~, etc. The second column is the whole part of the value, up until just
before the decimal point. The third column is the decimal point and the
fractional part of the value, if present. If the item being formatted does
not fit this schema, it can be wrapped in something like
‘multicolumn{3}{c}{…}’.

	
pwkit.latex.latexify_n2col(x, nplaces=None, **kwargs)

	Render a number into LaTeX in a 2-column format, where the columns split
immediately to the left of the decimal point. This gives nice alignment of
numbers in a table.

	
pwkit.latex.latexify_u3col(obj, **kwargs)

	Convert an object to special LaTeX for uncertainty tables.

This conversion is meant for uncertain values in a table. The return value
should span three columns. The first column ends just before the decimal
point in the main number value, if it has one. It has no separation from
the second column. The second column goes from the decimal point until
just before the “plus-or-minus” indicator. The third column goes from the
“plus-or-minus” until the end. If the item being formatted does not fit this
schema, it can be wrapped in something like ‘multicolumn{3}{c}{…}’.

	
pwkit.latex.latexify(obj, **kwargs)

	Render an object in LaTeX appropriately.

Reading and writing data tables with types and uncertainties (pwkit.tabfile)

pwkit.tabfile - I/O with typed tables of uncertain measurements.

Functions:

read - Read a typed table file.
vizread - Read a headerless table file, with columns specified separately
write - Write a typed table file.

The table format is line-oriented text. Hashes denote comments. Initial lines
of the form “colname = value” set a column name that gets the same value for
every item in the table. The header line is prefixed with an @ sign.
Subsequent lines are data rows.

	
pwkit.tabfile.read(path, tabwidth=8, **kwargs)

	Read a typed tabular text file into a stream of Holders.

Arguments:

	path

	The path of the file to read.

	tabwidth=8

	The tab width to assume. Please don’t monkey with it.

	mode=’rt’

	The file open mode (passed to io.open()).

	noexistok=False

	If True and the file is missing, treat it as empty.

	**kwargs

	Passed to io.open ().

Returns a generator for a stream of pwkit.Holder`s, each of which will
contain ints, strings, or some kind of measurement (cf `pwkit.msmt).

	
pwkit.tabfile.vizread(descpath, descsection, tabpath, tabwidth=8, **kwargs)

	Read a headerless tabular text file into a stream of Holders.

Arguments:

	descpath

	The path of the table description ini file.

	descsection

	The section in the description file to use.

	tabpath

	The path to the actual table data.

	tabwidth=8

	The tab width to assume. Please don’t monkey with it.

	mode=’rt’

	The table file open mode (passed to io.open()).

	noexistok=False

	If True and the file is missing, treat it as empty.

	**kwargs

	Passed to io.open ().

Returns a generator of a stream of pwkit.Holder`s, each of which will
contain ints, strings, or some kind of measurement (cf `pwkit.msmt). In
this version, the table file does not contain a header, as seen in Vizier
data files. The corresponding section in the description ini file has keys
of the form “colname = <start> <end> [type]”, where <start> and <end> are
the 1-based character numbers defining the column, and [type] is an
optional specified of the measurement type of the column (one of the usual
b, i, f, u, Lu, Pu).

	
pwkit.tabfile.write(stream, items, fieldnames, tabwidth=8)

	Write a typed tabular text file to the specified stream.

Arguments:

	stream

	The destination stream.

	items

	An iterable of items to write. Two passes have to
be made over the items (to discover the needed column widths),
so this will be saved into a list.

	fieldnames

	Either a list of field name strings, or a single string.
If the latter, it will be split into a list with .split().

	tabwidth=8

	The tab width to use. Please don’t monkey with it.

Returns nothing.

An “ini” file format with typed, uncertain data (pwkit.tinifile)

pwkit.tinifile - Dealing with typed ini-format files full of measurements.

Functions:

	read

	Generate pwkit.Holder instances of measurements from an ini-format file.

	write

	Write pwkit.Holder instances of measurements to an ini-format file.

	read_stream

	Lower-level version; only operates on streams, not path names.

	write_stream

	Lower-level version; only operates on streams, not path names.

	
pwkit.tinifile.write_stream(stream, holders, defaultsection=None, extrapos=(), sha1sum=False, **kwargs)

	extrapos is basically a hack for multi-step processing. We have some flux
measurements that are computed from luminosities and distances. The flux
value is therefore an unwrapped Uval, which doesn’t retain memory of any
positivity constraint it may have had. Therefore, if we write out such a
value using this routine, we may get something like fx:u = 1pm1, and the
next time it’s read in we’ll get negative fluxes. Fields listed in
extrapos will have a “P” constraint added if they are imprecise and
their typetag is just “f” or “u”.

Converting Unicode to LaTeX notation (pwkit.unicode_to_latex)

unicode_to_latex - what it says

Provides unicode_to_latex(u), unicode_to_latex_bytes(u), and
unicode_to_latex_string(u).

unicode_to_latex_bytes returns ASCII bytes that can be fed to LaTeX to
reproduce the Unicode string ‘u’ as closely as possible.

unicode_to_latex_string returns a Unicode string rather than bytes.

unicode_to_latex returns the str type: bytes on Python 2, Unicode on
Python 3.

External Software Environments

This documentation has a lot of stubs.

	CASA (pwkit.environments.casa)
	Outline of functionality

	More detailed documentation

	Using CASA in the pwkit.environments framework

	CASA installation notes

	HEASoft (pwkit.environments.heasoft)
	Using HEASoft in the pwkit.environments framework

	HEAsoft installation notes

	SAS (pwkit.environments.sas)
	Unpacking data sets

	SAS installation notes

	ODF data format notes

	More detailed documentation

	CIAO (pwkit.environments.ciao)
	Unpacking data sets

	CIAO installation notes

CASA (pwkit.environments.casa)

The pwkit.environments.casa package provides convenient interfaces to
the CASA [https://casa.nrao.edu/] package for analysis of radio interferometric data. In particular,
it makes it much easier to build scripts and modules for automated data
analysis.

This module does not require a full CASA installation, but it does depend on
the availability of the casac Python module, which provides Python access
to the C++ code that drives most of CASA’s low-level functionality. By far the
easiest way to obtain this module is to use an installation of Anaconda or
Miniconda Python [http://conda.pydata.org/miniconda.html] and install the casa-python [https://anaconda.org/pkgw-forge/casa-python] package provided by Peter
Williams, which builds on the infrastructure provided by the conda-forge [https://conda-forge.github.io/]
project.

Alternatively, you can try to install CASA and extract the casac module
from its files as described here [https://newton.cx/~peter/2014/02/casa-in-python-without-casapy/]. Or you can try to install this module
inside the Python environment bundled with CASA. Or you can compile and
underlying CASA C++ code yourself. But, using the pre-built packages is going
to be by far the simplest approach and is strongly recommended.

Outline of functionality

This package provides several kinds of functionality.

	The pwkit.environments.casa.tasks module provides straightforward
programmatic access to a wide selection of commonly-used CASA takes like
gaincal and setjy.

	pwkit installs a command-line program, casatask, which provides
command-line access to the tasks implemented in the
tasks module, much as MIRIAD tasks can be
driven straight from the command line.

	The pwkit.environments.casa.util module provides the lowest-level access
to the “tool” structures defined in the C++ code.

	Several modules like pwkit.environments.casa.dftphotom provide
original analysis features; dftphotom
extracts light curves of point sources from calibrated visibility data.

	If you do have a full CASA installation available on your compuer, the
pwkit.environments.casa.scripting module allows you to drive it from
Python code in a way that allows you to analyze its output, check for
error conditions, and so on. This is useful for certain features that are not
currently available in the tasks module.

More detailed documentation

	Programmatic access to CASA tasks (pwkit.environments.casa.tasks)
	Tasks

	CASA Tools and Utilities (pwkit.environments.casa.util)
	The tools object

	Useful Constants

	Useful Functions

	CASA: DFT Dynamic Spectra (pwkit.environments.casa.dftdynspec)
	The Loader class

	Compact-source photometry with discrete Fourier transformations (pwkit.environments.casa.dftphotom)
	Usage from Within Python

	API Reference

	Structured scripting within casapy (pwkit.environments.casa.scripting)

	Merging spectral windows in visibility data (pwkit.environments.casa.spwglue)

Using CASA in the pwkit.environments framework

The module pwkit.environments implements a system for running
sub-programs that depend on large, external software environments such as
CASA. It provides a command-line tool, pkenvtool, that you can use to run
code in a controlled CASA environment.

Some of the tasks provided by pwkit rely on this
framework to implement their functionality — in these cases, the value that
pwkit is providing is that it lets you access complex CASA
functionality through a simple function call in a standard Python environment,
rather than requiring manual invocation in a casapy shell.

In order to use these tasks or the CASA features of the pkenvtool program,
you must tell the pwkit.environments system where your CASA
installation may be found. To do this, just export an environment variable
named $PWKIT_CASA that stores the path to the CASA installation root. In
other words, the file $PWKIT_CASA/bin/casa should exist. (Well, the code
also checks for $PWKIT_CASA/bin/casapy to try to be compatible with older
CASA versions.) The environments system will take care of the rest.

Note: does this work on 32-bit systems? Does this work on Macs?

CASA installation notes

Download tarball as linked from here [http://casa.nrao.edu/casa_obtaining.shtml]. The tarball unpacks to some
versioned subdirectory. The names and version codes are highly variable and
annoying.

Programmatic access to CASA tasks (pwkit.environments.casa.tasks)

The way that the official casapy code is written, it’s basically
impossible to import its tasks into a straight-Python environment. (Trust me,
I’ve tried.) So, this module more-or-less duplicates lots of CASA code. But
this module also tries to provide to provide saner semantics and interfaces.

The goal is to make task-like functionality available in a real Python
library, with no side effects, so that data processing can be scripted
tractably. These tasks are also accessible through the casatask command
line program provided with pwkit.

Example programmatic usage:

from pwkit.environments.casa import tasks

vis_path = 'mydataset.ms'

A basic listobs:

for output_line in tasks.listobs(vis_path):
 print(output_line)

Split a dataset with filtering and averaging:

cfg = tasks.SplitConfig()
cfg.vis = vis_path
cfg.out = 'new-' + vis_path
cfg.spw = '0~8'
cfg.timebin = 60 # seconds
tasks.split(cfg)

This module implements the following analysis tasks. Some of them are
extremely close to CASA tasks of the same name; some are streamlined; some are
not provided in CASA at all.

	applycal — use calibration tables to generate CORRECTED_DATA
from DATA.

	bpplot — plot a bandpass calibration table; an order of
magnitude faster than the CASA equivalent.

	clearcal — fill calibration tables with default.

	concat — concatenate two data sets.

	delcal — delete the MODEL_DATA and/or CORRECTED_DATA MS
columns.

	elplot — plot elevations of the fields observed in an MS.

	extractbpflags — extract a table of channel flags from a
bandpass calibration table.

	flagcmd — apply flags to an MS using a generic infrastructure.

	flaglist — apply a textual list of flag commands to an MS.

	flagzeros — flag zero-valued visibilites in an MS.

	fluxscale — use a flux density model to absolutely scale a gain
calibration table.

	ft — generate model visibilities from an image.

	gaincal — solve for a gain calibration table.

	gencal — generate various calibration tables that do not depend on
the actual visibility data in an MS.

	getopacities — estimate atmospheric opacities for an
observation.

	gpdetrend — remove long-term phase trends from a complex-gain
calibration table.

	gpplot — plot a complex-gain calibration table in a sensible
way.

	image2fits — convert a CASA image to FITS format.

	importalma — convert an ALMA SDM file to MS format.

	importevla — convert an EVLA SDM file to MS format.

	listobs — print out the basic observational characteristics in
an MS data set.

	listsdm — print out the basic observational characteristics in
an SDM data set.

	mfsclean — image calibrated data using MFS and CLEAN.

	mjd2date — convert an MJD to a date in the textual format used by CASA.

	mstransform — perform basic streaming transforms on an MS data,
such as time averaging, Hanning smoothing, and/or velocity resampling.

	plotants — plot the positions of the antennas used in an MS.

	plotcal — plot a complex-gain calibration table using CASA’s
default infrastructure.

	setjy — insert absolute flux density calibration information
into a dataset.

	split — extract a subset of an MS.

	tsysplot — plot how the typical system temperature varies over
time.

	uvsub — fill CORRECTED_DATA with DATA - MODEL_DATA.

	xyphplot — plot a frequency-dependent X/Y phase calibration
table.

The following tasks are provided by the associated command line program,
casatask, but do not have dedicated functions in this module.

	closures — see closures.

	delmod — this is too trivial to need its own function.

	dftdynspec — see dftdynspec.

	dftphotom — see dftphotom.

	dftspect — see dftspect.

	flagmanager — more specialized functions should be used in code.

	gpdiagnostics — see gpdiagnostics.

	polmodel — see polmodel.

	spwglue — see spwglue.

Tasks

This documentation is automatically generated from text that is targeted at
the command-line tasks, and so may read a bit strangely at times.

applycal

	
pwkit.environments.casa.tasks.applycal(cfg)

	The applycal task.

	cfg

	A ApplycalConfig object.

This function runs the applycal task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the ApplycalConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.ApplycalConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.applycal(cfg)

This task may also be invoked through the command line, as casatask
applycal. Run casatask applycal --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.ApplycalConfig

	This is a configuration object for the applycal task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to applycal().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask applycal. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Fill in the CORRECTED_DATA column of a visibility dataset using
the raw data and a set of calibration tables.

	vis=

	The MS to modify

	calwt=

	Write out calibrated weights as well as calibrated visibilities.
Default: false

Pre-applied calibrations

	gaintable=

	Comma-separated list of calibration tables to apply on-the-fly
before solving

	gainfield=

	SEMICOLON-separated list of field selections to apply for each gain table.
If there are fewer items than there are gaintable items, the list is
padded with blank items, implying no selection by field.

	interp=

	COMMA-separated list of interpolation types to use for each gain
table. If there are fewer items, the list is padded with ‘linear’
entries. Allowed values: nearest linear cubic spline

	spwmap=

	SEMICOLON-separated list of spectral window mappings for each
existing gain table; each record is a COMMA-separated list of
integers. For the i’th spw in the dataset, spwmap[i] specifies
the record in the gain table to use. For instance [0, 0, 1, 1]
maps four spws in the UV data to just two spectral windows in
the preexisting gain table.

	opacity=

	Comma-separated list of opacities in nepers. One for each spw; if
there are more spws than entries, the last entry is used for the
remaining spws.

	gaincurve=

	Whether to apply VLA-specific built in gain curve correction
(default: false)

	parang=

	Whether to apply parallactic angle rotation correction
(default: false)

	Standard data selection keywords

	This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array,
correlation, field, intent, observation, scan, spw,
taql, timerange, uvrange.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

bpplot

	
pwkit.environments.casa.tasks.bpplot(cfg)

	The bpplot task.

	cfg

	A BpplotConfig object.

This function runs the bpplot task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the BpplotConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.BpplotConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.bpplot(cfg)

This task may also be invoked through the command line, as casatask
bpplot. Run casatask bpplot --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.BpplotConfig

	This is a configuration object for the bpplot task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to bpplot().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask bpplot. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Plot a bandpass calibration table. Currently, the supported format is a series
of pages showing amplitude and phase against normalized channel number, with
each page showing a particular antenna and polarization. Polarizations are
always reported as “R” and “L” since the relevant information is not stored
within the bandpass data set.

This task also works well to plot frequency-dependent polarimetric leakage
calibration tables.

	caltable=MS

	The input calibration Measurement Set

	dest=PATH

	If specified, plots are saved to this file – the format is inferred
from the extension, which must allow multiple pages to be saved. If
unspecified, the plots are displayed using a Gtk3 backend.

	dims=WIDTH,HEIGHT

	If saving to a file, the dimensions of a each page. These are in points
for vector formats (PDF, PS) and pixels for bitmaps (PNG). Defaults to
1000, 600.

	margins=TOP,RIGHT,LEFT,BOTTOM

	If saving to a file, the plot margins in the same units as the dims.
The default is 4 on every side.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

clearcal

	
pwkit.environments.casa.tasks.clearcal(vis, weightonly=False)

	Fill the imaging and calibration columns (MODEL_DATA,
CORRECTED_DATA, IMAGING_WEIGHT) of each measurement set with
default values, creating the columns if necessary.

	vis (string)

	Path to the input measurement set

	weightonly (boolean)

	If true, just create the IMAGING_WEIGHT column; do not fill
in the visibility data columns.

If you want to reset calibration models, these days you probably want
delmod_cli(). If you want to quickly make the columns go away, you
probably want delcal().

Example:

from pwkit.environments.casa import tasks
tasks.clearcal('myvis.ms')

concat

	
pwkit.environments.casa.tasks.concat(invises, outvis, timesort=False)

	Concatenate visibility measurement sets.

	invises (list of str)

	Paths to the input measurement sets

	outvis (str)

	Path to the output measurement set.

	timesort (boolean)

	If true, sort the output in time after concatenation.

Example:

from pwkit.environments.casa import tasks
tasks.concat(['epoch1.ms', 'epoch2.ms'], 'combined.ms')

delcal

	
pwkit.environments.casa.tasks.delcal(mspath)

	Delete the MODEL_DATA and CORRECTED_DATA columns from a measurement set.

	mspath (str)

	The path to the MS to modify

Example:

from pwkit.environments.casa import tasks
tasks.delcal('dataset.ms')

delmod

	
pwkit.environments.casa.tasks.delmod_cli(argv, alter_logger=True)

	Command-line access to delmod functionality.

The delmod task deletes “on-the-fly” model information from a
Measurement Set. It is so easy to implement that a standalone
function is essentially unnecessary. Just write:

from pwkit.environments.casa import util
cb = util.tools.calibrater()
cb.open('datasaet.ms', addcorr=False, addmodel=False)
cb.delmod(otf=True, scr=False)
cb.close()

If you want to delete the scratch columns, use delcal(). If you want
to clear the scratch columns, use clearcal().

elplot

	
pwkit.environments.casa.tasks.elplot(cfg)

	The elplot task.

	cfg

	A ElplotConfig object.

This function runs the elplot task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the ElplotConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.ElplotConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.elplot(cfg)

This task may also be invoked through the command line, as casatask
elplot. Run casatask elplot --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.ElplotConfig

	This is a configuration object for the elplot task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to elplot().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask elplot. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Plot elevations of fields observed in a MeasurementSet.

	vis=MS

	The input Measurement Set.

	dest=PATH

	If specified, plots are saved to this file – the format is inferred
from the extension, which must allow multiple pages to be saved. If
unspecified, the plots are displayed using a Gtk3 backend.

	dims=WIDTH,HEIGHT

	If saving to a file, the dimensions of a each page. These are in points
for vector formats(PDF, PS) and pixels for bitmaps(PNG). Defaults to
1000, 600.

	margins=TOP,RIGHT,LEFT,BOTTOM

	If saving to a file, the plot margins in the same units as the dims.
The default is 4 on every side.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

extractbpflags

	
pwkit.environments.casa.tasks.extractbpflags(calpath, deststream)

	Make a flags file out of a bandpass calibration table

	calpath (str)

	The path to the bandpass calibration table

	deststream (stream-like object, e.g. an opened file)

	Where to write the flags data

Below is documentation written for the command-line interface to this
functionality:

When CASA encounters flagged channels in bandpass calibration tables, it
interpolates over them as best it can – even if interp=’<any>,nearest’. This
means that if certain channels are unflagged in some target data but entirely
flagged in your BP cal, they’ll get multiplied by some number that may or may
not be reasonable, not flagged. This is scary if, for instance, you’re using
an automated system to find RFI, or you flag edge channels in some uneven way.

This script writes out a list of flagging commands corresponding to the
flagged channels in the bandpass table to ensure that the data without
bandpass solutions are flagged.

Note that, because we can’t select by antpol, we can’t express a situation in
which the R and L bandpass solutions have different flags. But in CASA the
flags seem to always be the same.

We’re assuming that the channelization of the bandpass solution and the data
are the same.

flagcmd

	
pwkit.environments.casa.tasks.flagcmd(cfg)

	The flagcmd task.

	cfg

	A FlagcmdConfig object.

This function runs the flagcmd task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the FlagcmdConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.FlagcmdConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.flagcmd(cfg)

This task may also be invoked through the command line, as casatask
flagcmd. Run casatask flagcmd --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.FlagcmdConfig

	This is a configuration object for the flagcmd task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to flagcmd().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask flagcmd. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Flag data using auto-generated lists of flagging commands.

flaglist

	
pwkit.environments.casa.tasks.flaglist(cfg)

	The flaglist task.

	cfg

	A FlaglistConfig object.

This function runs the flaglist task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the FlaglistConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.FlaglistConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.flaglist(cfg)

This task may also be invoked through the command line, as casatask
flaglist. Run casatask flaglist --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.FlaglistConfig

	This is a configuration object for the flaglist task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to flaglist().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask flaglist. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Flag data using a list of flagging commands stored in a text file. This
is approximately equivalent to ‘flagcmd(vis=, inpfile=, inpmode=’list’,
flagbackup=False)’.

This implementation must emulate the CASA modules that load up the
flagging commands and may not be precisely compatible with the CASA
version.

flagmanager

	
pwkit.environments.casa.tasks.flagmanager_cli(argv, alter_logger=True)

	Command-line access to flagmanager functionality.

The flagmanager task manages tables of flags associated with
measurement sets. Its features are easy to implement that a standalone
library function is essentially unnecessary. See the source code to this
function for the tool calls that implement different parts of the
flagmanager functionality.

flagzeros

	
pwkit.environments.casa.tasks.flagzeros(cfg)

	The flagzeros task.

	cfg

	A FlagzerosConfig object.

This function runs the flagzeros task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the FlagzerosConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.FlagzerosConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.flagzeros(cfg)

This task may also be invoked through the command line, as casatask
flagzeros. Run casatask flagzeros --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.FlagzerosConfig

	This is a configuration object for the flagzeros task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to flagzeros().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask flagzeros. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Flag zero data points in the specified data column.

fluxscale

	
pwkit.environments.casa.tasks.fluxscale(cfg)

	The fluxscale task.

	cfg

	A FluxscaleConfig object.

This function runs the fluxscale task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the FluxscaleConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.FluxscaleConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.fluxscale(cfg)

This task may also be invoked through the command line, as casatask
fluxscale. Run casatask fluxscale --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.FluxscaleConfig

	This is a configuration object for the fluxscale task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to fluxscale().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask fluxscale. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Write a new calibation table determining the fluxes for intermediate calibrators
from known reference sources

	vis=

	The visibility dataset.(Shouldn’t be needed, but …)

	caltable=

	The preexisting calibration table with gains associated with more than one source.

	fluxtable=

	The path of a new calibration table to create

	reference=

	Comma-separated names of sources whose model fluxes are assumed to be well-known.

	transfer=

	Comma-separated names of sources whose fluxes should be computed from the gains.

	listfile=

	If specified, write out flux information to this path.

	append=

	Boolean, default false. If true, append to existing cal table rather than
overwriting.

	refspwmap=

	Comma-separated list of integers. If gains are only available for some spws,
map from the data to the gains. For instance, refspwmap=1,1,3,3 means that spw 0
will have its flux calculated using the gains for spw 1.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

ft

	
pwkit.environments.casa.tasks.ft(cfg)

	The ft task.

	cfg

	A FtConfig object.

This function runs the ft task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the FtConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.FtConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.ft(cfg)

This task may also be invoked through the command line, as casatask
ft. Run casatask ft --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.FtConfig

	This is a configuration object for the ft task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to ft().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask ft. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Fill in(or update) the MODEL_DATA column of a Measurement Set with
visibilities computed from an image or list of components.

	vis=

	The path to the measurement set

	model=

	Comma-separated list of model images, each giving successive
Taylor terms of a spectral model for each source.(It’s fine
to have just one model, and this will do what you want.) The
reference frequency for the Taylor expansion is taken from
the first image.

	complist=

	Path to a CASA ComponentList Measurement Set to use in the modeling.
I don’t know what happens if you specify both this and “model”.
They might both get applied?

	incremental=

	Bool, default false, meaning that the MODEL_DATA column will be
replaced with the new values computed here. If true, the new values
are added to whatever’s already in MODEL_DATA.

	wprojplanes=

	Optional integer. If provided, W-projection will be used in the computation
of the model visibilities, using the specified number of planes. Note that
this does make a difference even now that this task only embeds information
in a MS to enable later on-the-fly computation of the UV model.

	usescratch=

	Foo.

	Standard data selection keywords

	This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array,
correlation, field, intent, observation, scan, spw,
taql, timerange, uvrange.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

gaincal

	
pwkit.environments.casa.tasks.gaincal(cfg)

	The gaincal task.

	cfg

	A GaincalConfig object.

This function runs the gaincal task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the GaincalConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.GaincalConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.gaincal(cfg)

This task may also be invoked through the command line, as casatask
gaincal. Run casatask gaincal --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.GaincalConfig

	This is a configuration object for the gaincal task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to gaincal().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask gaincal. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Compute calibration parameters from data. Encompasses the functionality
of CASA tasks ‘gaincal’ and ‘bandpass’.

	vis=

	Input dataset

	caltable=

	Output calibration table (can exist if append=True)

	gaintype=

	
	Kind of gain solution:

	G - gains per poln and spw(default)
T - like G, but one value for all polns
GSPLINE - like G, with a spline fit. “Experimental”
B - bandpass
BPOLY - bandpass with polynomial fit. “Somewhat experimental”
K - antenna-based delays
KCROSS - global cross-hand delay ; use parang=True
D - solve for instrumental leakage
Df - above with per-channel leakage terms
D+QU - solve for leakage and apparent source polarization
Df+QU - above with per-channel leakage terms
X - solve for absolute position angle phase term
Xf - above with per-channel phase terms
D+X - D and X. “Not normally done”
Df+X - Df and X. Presumably also not normally done.
XY+QU - ?
XYf+QU - ?

	calmode=

	What parameters to solve for: amplitude(“a”), phase(“p”), or both
(“ap”). Default is “ap”. Not used in bandpass solutions.

	solint=

	Solution interval; this is an upper bound, but solutions
will be broken across certain boundaries according to “combine”.
‘inf’ - solutions as long as possible(the default)
‘int’ - one solution per integration
(str) - a specific time with units(e.g. ‘5min’)
(number) - a specific time in seconds

	combine=

	Comma-separated list of boundary types; solutions will NOT be broken across
these boundaries. Types are: field, scan, spw.

	refant=

	Comma-separated list of reference antennas in decreasing
priority order.

	solnorm=

	Normalize solution amplitudes to 1 after solving (only applies
to gaintypes G, T, B). Also normalizes bandpass phases to zero
when solving for bandpasses. Default: false.

	append=

	Whether to append solutions to an existing table. If the table
exists and append=False, the table is overwritten! (Default: false)

Pre-applied calibrations

	gaintable=

	Comma-separated list of calibration tables to apply on-the-fly
before solving

	gainfield=

	SEMICOLON-separated list of field selections to apply for each gain table.
If there are fewer items than there are gaintable items, the list is
padded with blank items, implying no selection by field.

	interp=

	COMMA-separated list of interpolation types to use for each gain
table. If there are fewer items, the list is padded with ‘linear’
entries. Allowed values: nearest linear cubic spline

	spwmap=

	SEMICOLON-separated list of spectral window mappings for each
existing gain table; each record is a COMMA-separated list of
integers. For the i’th spw in the dataset, spwmap[i] specifies
the record in the gain table to use. For instance [0, 0, 1, 1]
maps four spws in the UV data to just two spectral windows in
the preexisting gain table.

	opacity=

	Comma-separated list of opacities in nepers. One for each spw; if
there are more spws than entries, the last entry is used for the
remaining spws.

	gaincurve=

	Whether to apply VLA-specific built in gain curve correction
(default: false)

	parang=

	Whether to apply parallactic angle rotation correction
(default: false)

Low-level parameters

	minblperant=

	Number of baselines for each ant in order to solve (default: 4)

	minsnr=

	Min. SNR for acceptable solutions (default: 3.0)

	preavg=

	Interval for pre-averaging data within each solution interval,
in seconds. Default is -1, meaning not to pre-average.

	smodel=I,Q,U,V

	Full-stokes point source model to use, if none is embedded in the vis file.

	Standard data selection keywords

	This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array,
correlation, field, intent, observation, scan, spw,
taql, timerange, uvrange.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

gencal

	
pwkit.environments.casa.tasks.gencal(cfg)

	The gencal task.

	cfg

	A GencalConfig object.

This function runs the gencal task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the GencalConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.GencalConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.gencal(cfg)

This task may also be invoked through the command line, as casatask
gencal. Run casatask gencal --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.GencalConfig

	This is a configuration object for the gencal task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to gencal().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask gencal. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Generate certain calibration tables that don’t need to be solved for from
the actual data.

If you want to generate antenna position corrections for Jansky VLA data, you
can just specify caltype=antpos and leave off the “parameter” keyword. This
will cause the task will talk to an NRAO server and automatically download the
correct position corrections. Other telescopes do not support this
functionality, but if you can obtain the position corrections, you can use the
“antenna” and “parameter” keywords to build the desired calibration table
manually.

	vis=

	Input dataset

	caltable=

	Output calibration table (appended to if preexisting)

	caltype=

	The kind of table to generate:
amp - generic amplitude correction; needs parameter(s)
ph - generic phase correction; needs parameter(s)
sbd - single-band delay: phase slope for each SPW; needs parameter(s)
mbd - multi-band delay: phase slope for all SPWs; needs parameter(s)
antpos - antenna position corrections in ITRF; what you want; accepts parameter(s)
antposvla - antenna position corrections in VLA frame; not what you want; accepts parameter(s)
tsys - tsys from ALMA syscal table
swpow - EVLA switched-power and requantizer gains(“experimental”)
opac - tropospheric opacity; needs parameter
gc - (E)VLA elevation-dependent gain curve
eff - (E)VLA antenna efficiency correction
gceff - combination of “gc” and “eff”
rq - EVLA requantizer gains; not what you want
swp/rq - EVLA switched-power gains divided by “rq”; not what you want

	parameter=

	Custom parameters for various caltypes. Dimensionality depends on selections applied.
amp - gain; dimensionless
ph - phase; degrees
sbd - delay; nanosec
mbd - delay; nanosec
antpos - position offsets; ITRF meters(or look up automatically for EVLA if unspecified)
antposvla - position offsets; meters in VLA reference frame
opac - opacity; dimensionless(nepers?)

	antenna=

	Selection keyword, governing which solutions to generate and controlling shape
of “parameter” keyword.

	pol=

	Analogous to “antenna”

	spw=

	Analogous to “antenna”

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

getopacities

	
pwkit.environments.casa.tasks.getopacities(ms, plotdest)

	

gpdetrend

	
pwkit.environments.casa.tasks.gpdetrend(cfg)

	The gpdetrend task.

	cfg

	A GpdetrendConfig object.

This function runs the gpdetrend task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the GpdetrendConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.GpdetrendConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.gpdetrend(cfg)

This task may also be invoked through the command line, as casatask
gpdetrend. Run casatask gpdetrend --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.GpdetrendConfig

	This is a configuration object for the gpdetrend task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to gpdetrend().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask gpdetrend. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Remove long-term phase trends from a complex-gain calibration table. For each
antenna/spw/pol, the complex gains are divided into separate chunks(e.g., the
intention is for one chunk for each visit to the complex-gain calibrator). The
mean phase within each chunk is divided out. The effect is to remove long-term
phase trends from the calibration table, but preserve short-term ones.

	caltable=MS

	The input calibration Measurement Set

	maxtimegap=int

	Measured in minutes. Gaps between solutions of this duration or longer will
lead to a new segment being considered. Default is four times the smallest
time gap seen in the data set.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

gpplot

	
pwkit.environments.casa.tasks.gpplot(cfg)

	The gpplot task.

	cfg

	A GpplotConfig object.

This function runs the gpplot task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the GpplotConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.GpplotConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.gpplot(cfg)

This task may also be invoked through the command line, as casatask
gpplot. Run casatask gpplot --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.GpplotConfig

	This is a configuration object for the gpplot task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to gpplot().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask gpplot. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Plot a gain calibration table. Currently, the supported format is a series of
pages showing amplitude and phase against time, with each page showing a
particular antenna and polarization. Polarizations are always reported as “R”
and “L” since the relevant information is not stored within the bandpass data
set.

	caltable=MS

	The input calibration Measurement Set

	dest=PATH

	If specified, plots are saved to this file – the format is inferred
from the extension, which must allow multiple pages to be saved. If
unspecified, the plots are displayed using a Gtk3 backend.

	dims=WIDTH,HEIGHT

	If saving to a file, the dimensions of a each page. These are in points
for vector formats(PDF, PS) and pixels for bitmaps(PNG). Defaults to
1000, 600.

	margins=TOP,RIGHT,LEFT,BOTTOM

	If saving to a file, the plot margins in the same units as the dims.
The default is 4 on every side.

	maxtimegap=10

	Solutions separated by more than this number of minutes will be drawn
with separate lines for clarity.

	mjdrange=START,STOP

	If specified, gain solutions outside of the MJDs STOP and START will be
ignored.

	phaseonly=false

	If True, plot only phases, and not amplitudes.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

image2fits

	
pwkit.environments.casa.tasks.image2fits(mspath, fitspath, velocity=False, optical=False, bitpix=-32, minpix=0, maxpix=-1, overwrite=False, dropstokes=False, stokeslast=True, history=True, **kwargs)

	Convert an image in MS format to FITS format.

	mspath (str)

	The path to the input MS.

	fitspath (str)

	The path to the output FITS file.

	velocity (boolean)

	(To be documented.)

	optical (boolean)

	(To be documented.)

	bitpix (integer)

	(To be documented.)

	minpix (integer)

	(To be documented.)

	maxpix (integer)

	(To be documented.)

	overwrite (boolean)

	Whether the task is allowed to overwrite an existing destination file.

	dropstokes (boolean)

	Whether the “Stokes” (polarization) axis of the image should be dropped.

	stokeslast (boolean)

	Whether the “Stokes” (polarization) axis of the image should be placed as the last
(innermost?) axis of the image cube.

	history (boolean)

	(To be documented.)

	**kwargs

	Forwarded on to the tofits function of the CASA image tool.

importalma

	
pwkit.environments.casa.tasks.importalma(asdm, ms)

	Convert an ALMA low-level ASDM dataset to Measurement Set format.

	asdm (str)

	The path to the input ASDM dataset.

	ms (str)

	The path to the output MS dataset.

This implementation automatically infers the value of the “tbuff”
parameter.

Example:

from pwkit.environments.casa import tasks
tasks.importalma('myalma.asdm', 'myalma.ms')

importevla

	
pwkit.environments.casa.tasks.importevla(asdm, ms)

	Convert an EVLA low-level SDM dataset to Measurement Set format.

	asdm (str)

	The path to the input ASDM dataset.

	ms (str)

	The path to the output MS dataset.

This implementation automatically infers the value of the “tbuff”
parameter.

Example:

from pwkit.environments.casa import tasks
tasks.importevla('myvla.sdm', 'myvla.ms')

listobs

	
pwkit.environments.casa.tasks.listobs(vis)

	Textually describe the contents of a measurement set.

	vis (str)

	The path to the dataset.

	Returns

	A generator of lines of human-readable output

Errors can only be detected by looking at the output. Example:

from pwkit.environments.casa import tasks

for line in tasks.listobs('mydataset.ms'):
 print(line)

listsdm

	
pwkit.environments.casa.tasks.listsdm(sdm, file=None)

	Generate a standard “listsdm” listing of(A)SDM dataset contents.

	sdm (str)

	The path to the (A)SDM dataset to parse

	file (stream-like object, such as an opened file)

	Where to print the human-readable listing. If unspecified, results
go to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout].

	Returns

	A dictionary of information about the dataset. Contents not yet
documented.

Example:

from pwkit.environments.casa import tasks
tasks.listsdm('myalmaa.asdm')

This code based on CASA’s task_listsdm.py, with this version info:

v1.0: 2010.12.07, M. Krauss
v1.1: 2011.02.23, M. Krauss: added functionality for ALMA data
#
Original code based on readscans.py, courtesy S. Meyers

mfsclean

	
pwkit.environments.casa.tasks.mfsclean(cfg)

	The mfsclean task.

	cfg

	A MfscleanConfig object.

This function runs the mfsclean task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the MfscleanConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.MfscleanConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.mfsclean(cfg)

This task may also be invoked through the command line, as casatask
mfsclean. Run casatask mfsclean --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.MfscleanConfig

	This is a configuration object for the mfsclean task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to mfsclean().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask mfsclean. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Drive the CASA imager with a very restricted set of options.

For W-projection, set ftmachine=’wproject’ and wprojplanes=64(or so).

	vis=

	Input visibility MS

	imbase=

	Base name of output files. We create files named “imbaseEXT”
where EXT is all of “mask”, “modelTT”, “imageTT”, “residualTT”,
and “psfTT”, and TT is empty if nterms = 1, and “ttN.” otherwise.

cell = 1 [arcsec]
ftmachine = ‘ft’ or ‘wproject’
gain = 0.1
imsize = 256,256
mask = (blank) or path of CASA-format region text file
niter = 500
nterms = 1
phasecenter = (blank) or ‘J2000 12h34m56.7 -12d34m56.7’
reffreq = 0 [GHz]
stokes = I
threshold = 0 [mJy]
weighting = ‘briggs’(robust=0.5) or ‘natural’
wprojplanes = 1

	Standard data selection keywords

	This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array,
correlation, field, intent, observation, scan, spw,
taql, timerange, uvrange.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

mjd2date

	
pwkit.environments.casa.tasks.mjd2date(mjd, precision=3)

	Convert an MJD to a data string in the format used by CASA.

	mjd (numeric)

	An MJD value in the UTC timescale.

	precision (integer, default 3)

	The number of digits of decimal precision in the seconds portion of
the returned string

	Returns

	A string representing the input argument in CASA format:
YYYY/MM/DD/HH:MM:SS.SSS.

Example:

from pwkit.environment.casa import tasks
print(tasks.mjd2date(55555))
yields '2010/12/25/00:00:00.000'

mstransform

	
pwkit.environments.casa.tasks.mstransform(cfg)

	The mstransform task.

	cfg

	A MstransformConfig object.

This function runs the mstransform task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the MstransformConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.MstransformConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.mstransform(cfg)

This task may also be invoked through the command line, as casatask
mstransform. Run casatask mstransform --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.MstransformConfig

	This is a configuration object for the mstransform task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to mstransform().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask mstransform. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

	vis=

	Input visibility MS

	out=

	Output visibility MS

	datacolumn=corrected

	The data column on which to operate. Comma-separated list of: data,
model, corrected, float_data, lag_data, all

	realmodelcol=False

	If true, turn a virtual model column into a real one.

	keepflags=True

	If false, discard completely-flagged rows.

	usewtspectrum=False

	If true, fill in a WEIGHT_SPECTRUM column in the output data set.

	combinespws=False

	If true, combine spectral windows

	chanaverage=False

	If true, average the data in frequency. NOT WIRED UP.

	hanning=False

	If true, Hanning smooth the data spectrally to remove Gibbs ringing.

	regridms=False

	If true, put the data on a new spectral window structure or reference frame.

	timebin=<seconds>

	If specified, time-average the visibilities with the specified binning.

	timespan=<undefined>

	Allow averaging to span over potential discontinuities in the data set.
Comma-separated list of options; allowed values are: scan, state

	Standard data selection keywords

	This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array,
correlation, field, intent, observation, scan, spw,
taql, timerange, uvrange.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

plotants

	
pwkit.environments.casa.tasks.plotants(vis, figfile)

	Plot the physical layout of the antennas described in the MS.

	vis (str)

	Path to the input dataset

	figfile (str)

	Path to the output image file.

The output image format will be inferred from the extension of figfile.
Example:

from pwkit.environments.casa import tasks
tasks.plotants('dataset.ms', 'antennas.png')

plotcal

	
pwkit.environments.casa.tasks.plotcal(cfg)

	The plotcal task.

	cfg

	A PlotcalConfig object.

This function runs the plotcal task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the PlotcalConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.PlotcalConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.plotcal(cfg)

This task may also be invoked through the command line, as casatask
plotcal. Run casatask plotcal --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.PlotcalConfig

	This is a configuration object for the plotcal task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to plotcal().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask plotcal. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Plot values from a calibration dataset in any of a variety of ways.

	caltable=

	The calibration MS to plot

	xaxis=

	amp antenna chan freq imag phase real snr time

	yaxis=

	amp antenna imag phase real snr

	iteration=

	antenna field spw time

Supported data selection keywords

Limited data selection is supported. Allowed keywords are antenna,
field, poln, spw, and timerange. The poln keyword may take
on the values RL, R, L, XY, X, Y, and /.

Plot appearance options

To be documented. These keywords control the plot appearance: plotsymbol,
plotcolor, fontsize, figfile.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

setjy

	
pwkit.environments.casa.tasks.setjy(cfg)

	The setjy task.

	cfg

	A SetjyConfig object.

This function runs the setjy task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the SetjyConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.SetjyConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.setjy(cfg)

This task may also be invoked through the command line, as casatask
setjy. Run casatask setjy --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.SetjyConfig

	This is a configuration object for the setjy task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to setjy().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask setjy. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Insert model data into a measurement set. We force usescratch=False
and scalebychan=True. You probably want to specify “field”.

	fluxdensity=

	Up to four comma-separated numbers giving Stokes IQUV intensities in
Jy. Default values are [-1, 0, 0, 0]. If the Stokes I intensity is
negative (i.e., the default), a “sensible default” will be used:
detailed spectral models if the source is known (see “standard”), or
1 otherwise. If it is zero and “modimage” is used, the flux density
of the model image is used. The built-in standards do NOT have
polarimetric information, so for pol cal you do need to manually
specify the flux density information – or see the program
“casatask polmodel”.

	modimage=

	An image to use as the basis for the source’s spatial structure and,
potentialy, flux density (if fluxdensity=0). Only usable for Stokes
I. If the verbatim value of “modimage” can’t be opened as a path,
it is assumed to be relative to the CASA data directory; a typical
value might be “nrao/VLA/CalModels/3C286_C.im”.

	spindex=

	If using fluxdensity, these specify the spectral dependence of the values,
such that S = fluxdensity * (freq/reffreq)**spindex. Reffreq is in GHz.
Default values are 0 and 1, giving no spectral dependence.

	reffreq=

	See spindex.

	standard=’Perley-Butler 2013’

	Acceptable values are: Baars, Perley 90, Perley-Taylor 95,
Perley-Taylor 99, Perley-Butler 2010, Perley-Butler 2013. You can
specify the solar-system standard “Butler-JPL-Horizons 2012”, but
doing so farms out the work to a stock CASA installation.

Supported data selection keywords

Only a subset of the standard data selection keywords are supported:
field, observation, scan, spw, timerange..

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

split

	
pwkit.environments.casa.tasks.split(cfg)

	The split task.

	cfg

	A SplitConfig object.

This function runs the split task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the SplitConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.SplitConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.split(cfg)

This task may also be invoked through the command line, as casatask
split. Run casatask split --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.SplitConfig

	This is a configuration object for the split task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to split().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask split. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

	timebin=

	Time-average data into bins of “timebin” seconds; defaults to no averaging

	step=

	Frequency-average data in bins of “step” channels; defaults to no averaging

	col=all

	Extract the column “col” as the DATA column. If “all”, copy all available
columns without renaming. Possible values: all, DATA, MODEL_DATA,
CORRECTED_DATA, FLOAT_DATA, LAG_DATA.

	combine=[col1,col2,…]

	When time-averaging, don’t start a new bin when the specified columns change.
Acceptable column names: scan, state.

	Standard data selection keywords

	This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array,
correlation, field, intent, observation, scan, spw,
taql, timerange, uvrange.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

tsysplot

	
pwkit.environments.casa.tasks.tsysplot(cfg)

	The tsysplot task.

	cfg

	A TsysplotConfig object.

This function runs the tsysplot task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the TsysplotConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.TsysplotConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.tsysplot(cfg)

This task may also be invoked through the command line, as casatask
tsysplot. Run casatask tsysplot --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.TsysplotConfig

	This is a configuration object for the tsysplot task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to tsysplot().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask tsysplot. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Plot a system temperature(Tsys) calibration table.

	caltable=MS

	The input calibration Measurement Set

	dest=PATH

	If specified, plots are saved to this file – the format is inferred
from the extension, which must allow multiple pages to be saved. If
unspecified, the plots are displayed using a Gtk3 backend.

	dims=WIDTH,HEIGHT

	If saving to a file, the dimensions of a each page. These are in points
for vector formats(PDF, PS) and pixels for bitmaps(PNG). Defaults to
1000, 600.

	margins=TOP,RIGHT,LEFT,BOTTOM

	If saving to a file, the plot margins in the same units as the dims.
The default is 4 on every side.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

uvsub

	
pwkit.environments.casa.tasks.uvsub(cfg)

	The uvsub task.

	cfg

	A UvsubConfig object.

This function runs the uvsub task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the UvsubConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.UvsubConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.uvsub(cfg)

This task may also be invoked through the command line, as casatask
uvsub. Run casatask uvsub --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.UvsubConfig

	This is a configuration object for the uvsub task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to uvsub().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask uvsub. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Set the CORRECTED_DATA column to the difference of DATA and MODEL_DATA.

	vis=

	The input data set.

	reverse=

	Boolean, default false, which means to set CORRECTED = DATA - MODEL. If
true, CORRECTED = DATA + MODEL.

	Standard data selection keywords

	This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array,
correlation, field, intent, observation, scan, spw,
taql, timerange, uvrange.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

xyphplot

	
pwkit.environments.casa.tasks.xyphplot(cfg)

	The xyphplot task.

	cfg

	A XyphplotConfig object.

This function runs the xyphplot task. For documentation of the
general functionality of this task and the parameters it takes, see the
documentation for the XyphplotConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.XyphplotConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.xyphplot(cfg)

This task may also be invoked through the command line, as casatask
xyphplot. Run casatask xyphplot --help to see another version of
the documentation provided below.

	
class pwkit.environments.casa.tasks.XyphplotConfig

	This is a configuration object for the xyphplot task. This object
contains no methods. Rather it contains placeholders (and default values) for
parameters that can be passed to xyphplot().

The following documentation is written to target the command-line version
of this task, which may be invoked as casatask xyphplot. “Keywords”
refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Plot a frequency-dependent X/Y phase calibration table.

	caltable=MS

	The input calibration Measurement Set

	dest=PATH

	If specified, plots are saved to this file – the format is inferred
from the extension, which must allow multiple pages to be saved. If
unspecified, the plots are displayed using a Gtk3 backend.

	dims=WIDTH,HEIGHT

	If saving to a file, the dimensions of a each page. These are in points
for vector formats(PDF, PS) and pixels for bitmaps(PNG). Defaults to
1000, 600.

	margins=TOP,RIGHT,LEFT,BOTTOM

	If saving to a file, the plot margins in the same units as the dims.
The default is 4 on every side.

	loglevel=

	Level of detail from CASA logging system. Default value is warn. Allowed
values are: severe, warn, info, info1, info2, info3,
info4, info5, debug1, debug2, debugging.

CASA Tools and Utilities (pwkit.environments.casa.util)

This module provides low-level tools and utilities for interacting with the
casac module provided by CASA.

This module provides:

	The tools object

	Useful Constants

	Useful Functions

The tools object

	
pwkit.environments.casa.util.tools

	This object is a singleton instance of a hidden class that assists in the
creation of CASA “tools” objects. For instance, you can create and use a
standard CASA “tool” for reading and manipulating data tables with code
like this:

from pwkit.environments.casa import util
tb = util.tools.table()
tb.open('myfile.ms')
tb.close()

Documentation for the individual CASA “tools” is beyond the scope of
pwkit … although maybe it will be added, since the documentation
provided by CASA is pretty weak.

Here’s a list of CASA tool names. They can all be created in the same way:
by calling the function tools.<toolname>(). This will work even for any
tools not appearing in this list, so long as they’re provided by the
underlying CASA libraries:

	agentflagger

	atmosphere

	calanalysis

	calibrater

	calplot

	componentlist

	coordsys

	deconvolver

	fitter

	flagger

	functional

	image

	imagepol

	imager

	logsink

	measures

	msmetadata

	ms

	msplot

	mstransformer

	plotms

	regionmanager

	simulator

	spectralline

	quanta

	table

	tableplot

	utils

	vlafiller

	vpmanager

Useful Constants

The following useful constants are provided:

	
pwkit.environments.casa.util.INVERSE_C_SM

	The inverse of the speed of light, c, measured in seconds per meter. This
is useful for converting between wavelength and light travel time.

	
pwkit.environments.casa.util.INVERSE_C_NSM

	The inverse of the speed of light, c, measured in nanoseconds per meter.
This is useful for converting between wavelength and light travel time.

	
pwkit.environments.casa.util.pol_names

	A dictionary mapping CASA polarization codes to their textual names. For
instance, pol_names[9] is "XX" and pol_names[7] is "LR".

	
pwkit.environments.casa.util.pol_to_miriad

	A dictionary mapping CASA polarization codes to MIRIAD polarization codes,
such that:

miriad_pol_code = pol_to_miriad[casa_pol_code]

CASA defines many more polarization codes than MIRIAD, although it is
unclear whether CASA’s additional ones are ever used in practice. Trying to
map a code without a MIRIAD equivalent will result in a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] as
you might expect.

	
pwkit.environments.casa.util.pol_is_intensity

	A dictionary mapping CASA polarization codes to booleans indicating whether
the polarization is of “intensity” type. “Intensity-type” polarizations
cannot have negative values; they are II, RR, LL, XX, YY, PP, and QQ.

	
pwkit.environments.casa.util.msselect_keys

	A set [https://docs.python.org/3/library/stdtypes.html#set] of the keys supported by the CASA “MS-select” subsystem.

Useful Functions

	sanitize_unicode(item)

	Safely pass string values to the CASA tools.

	datadir(*subdirs)

	Get a path within the CASA data directory.

	logger([filter])

	Set up CASA to write log messages to standard output.

	forkandlog(function[, filter, debug])

	Fork a child process and read its CASA log output.

	
pwkit.environments.casa.util.sanitize_unicode(item)

	Safely pass string values to the CASA tools.

	item

	A value to be passed to a CASA tool.

In Python 2, the bindings to CASA tasks expect to receive all string values
as binary data (str [https://docs.python.org/3/library/stdtypes.html#str]) and not Unicode. But pwkit often uses
the from __future__ import unicode_literals statement to prepare for
Python 3 compatibility, and other Python modules are getting better about
using Unicode consistently, so more and more module code ends up using
Unicode strings in cases where they might get exposed to CASA. Doing so
will lead to errors.

This helper function converts Unicode into UTF-8 encoded bytes for
arguments that you might pass to a CASA tool. It will leave non-strings
unchanged and recursively transform collections, so you can safely use it
just about anywhere.

I usually import this as just b and write tool.method(b(arg)), in
analogy with the b'' byte string syntax. This leads to code such as:

from pwkit.environments.casa.util import tools, sanitize_unicode as b

tb = tools.table()
path = u'data.ms'
tb.open(path) # => raises exception
tb.open(b(path)) # => works

	
pwkit.environments.casa.util.datadir(*subdirs)

	Get a path within the CASA data directory.

	subdirs

	Extra elements to append to the returned path.

This function locates the directory where CASA resource data files (tables
of time offsets, calibrator models, etc.) are stored. If called with no
arguments, it simply returns that path. If arguments are provided, they are
appended to the returned path using os.path.join() [https://docs.python.org/3/library/os.path.html#os.path.join], making it easy to
construct the names of specific data files. For instance:

from pwkit.environments.casa import util

cal_image_path = util.datadir('nrao', 'VLA', 'CalModels', '3C286_C.im')
tb = util.tools.image()
tb.open(cal_image_path)

	
pwkit.environments.casa.util.logger(filter='WARN')

	Set up CASA to write log messages to standard output.

	filter

	The log level filter: less urgent messages will not be shown. Valid values
are strings: “DEBUG1”, “INFO5”, … “INFO1”, “INFO”, “WARN”, “SEVERE”.

This function creates and returns a CASA ”log sink” object that is
configured to write to standard output. The default CASA implementation
would always create a file named casapy.log in the current
directory; this function safely prevents such a file from being left
around. This is particularly important if you don’t have write permissions
to the current directory.

	
pwkit.environments.casa.util.forkandlog(function, filter='INFO5', debug=False)

	Fork a child process and read its CASA log output.

	function

	A function to run in the child process

	filter

	The CASA log level filter to apply in the child process: less urgent
messages will not be shown. Valid values are strings: “DEBUG1”, “INFO5”,
… “INFO1”, “INFO”, “WARN”, “SEVERE”.

	debug

	If true, the standard output and error of the child process are not
redirected to /dev/null.

Some CASA tools produce important results that are only provided via log
messages. This is a problem for automation, since there’s no way for
Python code to intercept those log messages and extract the results of
interest. This function provides a framework for working around this
limitation: by forking a child process and sending its log output to a
pipe, the parent process can capture the log messages.

This function is a generator. It yields lines from the child process’ CASA
log output.

Because the child process is a fork of the parent, it inherits a complete
clone of the parent’s state at the time of forking. That means that the
function argument you pass it can do just about anything you’d do in a
regular program.

The child process’ standard output and error streams are redirected to
/dev/null unless the debug argument is true. Note that the CASA log
output is redirected to a pipe that is neither of these streams. So, if
the function raises an unhandled Python exception, the Python traceback
will not pollute the CASA log output. But, by the same token, the calling
program will not be able to detect that the exception occurred except by
its impact on the expected log output.

CASA: DFT Dynamic Spectra (pwkit.environments.casa.dftdynspec)

This module provides code to extract dynamic spectra from CASA Measurement
Sets. CASA doesn’t have a task that does this.

The function dftdynspec() computes the dynamic spectrum of a point
source using a discrete Fourier transform of its visibilities. The function
dftdynspec_cli() provides a hook to launch the computation from a
command-line program.

You can launch a computation from the command line using the command
casatask dftdynspec.

Due to limitations in the documentation system we’re using, the options to the
dynamic spectrum computation are not documented here. You can read about them
by running casatask dftdynspec --help.

The Loader class

Unlike the other DFT tasks, dftdynspec() produces output that is not
easily represented as a table. It is saved to disk as a set of Numpy arrays.
The Loader class provides a convenient mechanism for loading an
output data set.

To load and manipulate data, create a Loader instance and then access
the various arrays described below:

from pwkit.environments.casa.dftdynspec import Loader
path = 'mydataset.npy' # this gets customized
ds = Loader(path)
print('Maximum real part:', ds.reals.max())

	
class pwkit.environments.casa.dftdynspec.Loader(path)

	Read in a dynamic-spectrum file produced by the dftdynspec task.

Constructor arguments

	path

	The path of the file to read.

Members

	
counts = None

	A 2D array recording the number of visibilities that went into each
average. Shape is (mjds.size, freqs.size).

	
freqs = None

	A 1D sorted array of the frequencies of the data samples, measured in GHz.

	
imags = None

	A 2D array of the imaginary parts of the averaged visibilities. Shape is
(mjds.size, freqs.size).

	
mjds = None

	A 1D sorted array of the MJDs of the data samples.

	
n_freqs

	The size of the frequency axis of the data arrays; an integer.

	
n_mjds

	The size of the MJD axis of the data arrays; an integer.

	
reals = None

	A 2D array of the real parts of the averaged visibilities. Shape is
(mjds.size, freqs.size).

	
u_imags = None

	A 2D array of the estimated uncertainties on the imaginary parts of the
averaged visibilities. Shape is (mjds.size, freqs.size).

	
u_reals = None

	A 2D array of the estimated uncertainties on the real parts of the averaged
visibilities. Shape is (mjds.size, freqs.size).

Compact-source photometry with discrete Fourier transformations (pwkit.environments.casa.dftphotom)

This module implements an algorithm to compute light curves for point
sources in interferometric visibility data. CASA doesn’t have a task to do this.

The algorithm is accessible from the command line as casatask dftphotom,
but it can also be invoked from within Python. For help on usage from the
command line, run casatask dftphotom --help. The command’s help text will
also describe some of the parameters below in more detail than is currently
found here.

Usage from Within Python

Basic usage from within Python looks like this:

from pwkit.astutil import parsehours, parsedeglat
from pwkit.environments.casa import dftphotom

Here's a sample way to specify the coordinates to
use; anything that produces J2000 RA/Dec in radians
will work:
ra = parsehours('17:45:00') # result is in radians
dec = parsedeglat('-23:00:00') # result is in radians

cfg = dftphotom.Config()
cfg.vis = 'path/to/vis/data.ms'
cfg.format = dftphotom.PandasOutputFormat()
cfg.outstream = open('mydata.txt', 'w')
cfg.rephase = (ra, dec)

dftphotom.dftphotom(cfg)

The main algorithm is implemented in the dftphotom() function. All of
the algorithm parameters are passed to the function via a Config
structure. You can create one Config and call dftphotom() with
it repeatedly, altering the parameters each time if you have a series of
related computations to run.

API Reference

	
class pwkit.environments.casa.dftphotom.Config

	
	
vis = KeywordOptions(required=True, subval=<class 'str'>)

	The path to the visibility MeasurementSet to process. No default; you
must specify a value before calling dftphotom().

	
datacol = 'data'

	A string specifying which visibility data column to process: data,
corrected_data, or model_data. Default 'data'.

	
believeweights = False

	Whether to trust that the data-weight information in the MS accurately
describe the noise in their corresponding visibilities. Default False.

	
outstream

	A file-like object into which the output table of data will be written.
No default in the Python interface.

	
datascale = 1000000.0

	The amount by which to scale the computed values before emitting them as
text. The default is 1e6, which means that the output will be in
microJanskys if the underlying data are calibrated to Jansky units.

	
format

	An instance of a class that will format the algorithm outputs into text.
Either HumaneOutputFormat or PandasOutputFormat.

	
rephase

	A coordinate tuple (ra, dec), giving a location towards which to
rephase the visibility data. The inputs are in radians. If left as
None, the visibilities will not be rephased.

Generic CASA data-selection options

	
array = <class 'str'>

	

	
baseline = <class 'str'>

	

	
field = <class 'str'>

	

	
observation = <class 'str'>

	

	
polarization = 'RR,LL'

	

	
scan = <class 'str'>

	

	
scanintent = <class 'str'>

	

	
spw = <class 'str'>

	

	
taql = <class 'str'>

	

	
time = <class 'str'>

	

	
uvdist = <class 'str'>

	

Generic CASA task options

	
loglevel = 'warn'

	

	
pwkit.environments.casa.dftphotom.dftphotom(cfg)

	Run the discrete-Fourier-transform photometry algorithm.

See the module-level documentation and the output of casatask dftphotom
--help for help. All of the algorithm configuration is specified in the
cfg argument, which is an instance of Config.

	
pwkit.environments.casa.dftphotom.dftphotom_cli(argv)

	Command-line access to the dftphotom() algorithm.

This function implements the behavior of the command-line casatask
dftphotom tool, wrapped up into a single callable function. The argument
argv is a list of command-line arguments, in Unix style where the zeroth
item is the name of the command.

	
class pwkit.environments.casa.dftphotom.HumaneOutputFormat

	

	
class pwkit.environments.casa.dftphotom.PandasOutputFormat

	

Structured scripting within casapy (pwkit.environments.casa.scripting)

pwkit.environments.casa.scripting - scripted invocation of casapy.

The “casapy” program is extremely resistant to encapsulated scripting – it
pops up GUI windows and child processes, leaves log files around, provides a
non-vanilla Python environment, and so on. However, sometimes scripting CASA
is what we need to do. This tool enables that.

We provide a single-purpose CLI tool for this functionality, so that you can
write standalone scripts with a hashbang line of “#! /usr/bin/env
pkcasascript” – hashbang lines support only one extra command-line
argument, so if we’re using “env” we can’t take a multitool approach.

	
class pwkit.environments.casa.scripting.CasapyScript(script, raise_on_error=True, **kwargs)

	Context manager for launching a script in the casapy environment. This
involves creating a temporary wrapper and then using the CasaEnvironment
to run it in a temporary directory.

When this context manager is entered, the script is launched and the
calling process waits until it finishes. This object is returned. The
with statement body is then executed so that information can be
extracted from the results of the casapy invocation. When the context
manager is exited, the casapy files are (usually) cleaned up.

Attributes:

	args

	the arguments to passed to the script.

	env

	the CasaEnvironment used to launch the casapy process.

	exitcode

	the exit code of the casapy process. 0 is success. 127 indicates
an intentional error exit by the script; additional diagnostics
don’t need printing and the work directory doesn’t need
preservation. Negative values indicate death from a signal.

	proc

	the subprocess.Popen instance of casapy; inside the context
manager body it’s already exited.

	rmtree

	boolean; whether to delete the working tree upon context manager
exit.

	script

	the path to the script to be invoked.

	workdir

	the working directory in which casapy was started.

	wrapped

	the path to the wrapper script run inside casapy.

There is a very large overhead to running casapy scripts. The outer Python
code sleeps for at least 5 seconds to allow various cleanups to happen.

Merging spectral windows in visibility data (pwkit.environments.casa.spwglue)

pwkit.environments.casa.spwglue - merge spectral windows in a MeasurementSet

I find that merging windows in this way offers a lot of advantages. This
procesing step is very slow, however.

	
class pwkit.environments.casa.spwglue.Progress

	This could be split out; it’s useful.

	
class pwkit.environments.casa.spwglue.Config

	
	
hackfield

	alias of builtins.int

	
meanbp

	alias of builtins.str

HEASoft (pwkit.environments.heasoft)

This module provides an encapsulated scheme for running HEASoft tools
within the pwkit.environments framework.

This module sets things up such that parameter files for HEASoft tasks
(“pfiles”) land in the directory ~/.local/share/hea-pfiles/.

Using HEASoft in the pwkit.environments framework

The module pwkit.environments implements a system for running
sub-programs that depend on large, external software environments such as
HEASoft. It provides a command-line tool, pkenvtool, that you can use to
run HEASoft code in a controlled environment.

In order to use this module, you must tell the pwkit.environments
system where your HEASoft installation may be found. To do this, just export
an environment variable named $PWKIT_HEASOFT that stores the path to the
platform-specific subdirectory of your HEASoft installation. In other words,
the file $PWKIT_HEASOFT/headas-init.sh should exist. On a Linux system the
value of $PWKIT_HEASOFT might end with something like
x86_64-unknown-linux-gnu-libc2.23. Once you’ve correctly set this
environment variable, the environments system will take care of the rest.

HEAsoft installation notes

The following examples assume version 6.21 for concreteness. Substitute your
actual version as needed, of course.

Installation of HEASoft from source is strongly recommended. Download the
source code from a URL like this one [http://heasarc.gsfc.nasa.gov/FTP/software/lheasoft/release/heasoft-6.21src.tar.gz].
The HEASoft website lets you customize the tarball, but it’s probably easiest
just to do the full install every time. The tarball unpacks into a directory
named like heasoft-6.21/... so you can safely curl|tar in your
source-code directory.

To build, then run something like:

$ cd heasoft-6.21/BUILD_DIR
$./configure --prefix=/a/heasoft/6.21
$ make # note: not parallel-friendly
$ make install

You then need to fetch the CALDB data files into the HEASoft installation directory:

$ cd /a/heasoft/6.21
$ wget http://heasarc.gsfc.nasa.gov/FTP/caldb/software/tools/caldb.config
$ wget http://heasarc.gsfc.nasa.gov/FTP/caldb/software/tools/alias_config.fits

SAS (pwkit.environments.sas)

sas - running software in the SAS environment

To use, export an environment variable $PWKIT_SAS pointing to the SAS
installation root. The files $PWKIT_SAS/RELEASE and $PWKIT_SAS/setsas.sh
should exist. The “current calibration files” (CCF) should be accessible as
$PWKIT_SAS/ccf/; a symlink may make sense if multiple SAS versions are going
to be used.

SAS is unusual because you need to set up some magic environment variables
specific to the dataset that you’re working with. There is also default
preparation to be run on each dataset before anything useful can be done.

Unpacking data sets

Data sets are downloaded as tar.gz files. Those unpack to a few files in ‘.’
including a .TAR file, which should be unpacked too. That unpacks to a bunch
of data files in ‘.’ as well.

SAS installation notes

Download tarball from, e.g.,

ftp://legacy.gsfc.nasa.gov/xmm/software/sas/14.0.0/64/Linux/Fedora20/

Tarball unpacks installation script and data into ‘.’, and the installation
script sets up a SAS install in a versioned subdirectory of ‘.’, so curl|tar
should be run from something like /a/sas:

$./install.sh

The CCF are like CALDB and need to be rsynced – see the update-ccf
subcommand.

ODF data format notes

ODF files all have names in the format RRRR_NNNNNNNNNN_IIUEEECCMMM.ZZZ where:

	RRRR

	revolution (orbit) number

	NNNNNNNNNN

	obs ID

	II

	The instrument:

	OM

	optical monitor

	R1

	RGS (reflection grating spectrometer) unit 1

	R2

	RGS 2

	M1

	EPIC (imaging camera) MOS 1 detector

	M2

	EPIC (imaging camera) MOS 2 detector

	PN

	EPIC (imaging camera) PN detector

	RM

	EPIC radiation monitor

	SC

	spacecraft

	U

	Scheduling status of exposure:

	S

	scheduled

	U

	unscheduled

	X

	N/A

	EEE

	exposure number

	CC

	CCD/OM-window ID

	MMM

	data type of file (many; not listed here)

	ZZZ

	file extension

See the make-*-aliases commands for tools that generate symlinks with saner
names.

More detailed documentation

	Interacting with SAS data sets (pwkit.environments.sas.data)
	Data sets

Interacting with SAS data sets (pwkit.environments.sas.data)

pwkit.environments.sas.data - loading up SAS data sets

Data sets

	BaseSASData(path[, mjd0, t0])

	

	Events(path[, mjd0, t0])

	

	GTIData(path[, mjd0, t0])

	

	Lightcurve(path[, mjd0, t0])

	

	RegionData(path[, mjd0, t0])

	

	
class pwkit.environments.sas.data.BaseSASData(path, mjd0=None, t0=None)

	

	
class pwkit.environments.sas.data.Events(path, mjd0=None, t0=None)

	

	
class pwkit.environments.sas.data.GTIData(path, mjd0=None, t0=None)

	

	
class pwkit.environments.sas.data.Lightcurve(path, mjd0=None, t0=None)

	

	
class pwkit.environments.sas.data.RegionData(path, mjd0=None, t0=None)

	

CIAO (pwkit.environments.ciao)

ciao - running software in the CIAO environment

To use, export an environment variable $PWKIT_CIAO pointing to the CIAO
installation root.

Unpacking data sets

Data sets are provided as tar files. They unpack to a directory named by the
“obsid” which contains an oif.fits file and primary and secondary
subdirectories.

CIAO installation notes

Download installer script from http://cxc.harvard.edu/ciao/download/. Select
some kind of parent directory like /soft/ciao for both downloading
tarballs and installing CIAO itself. This may also download and install the
large “caldb” data set. All of the files will end up in a subdirectory such as
/soft/ciao/ciao-4.8.

	
class pwkit.environments.ciao.CiaoTool

	
	
invoke_command(cmd, args, **kwargs)

	This function mainly exists to be overridden by subclasses.

Tools for writing command-line programs

This documentation has a lot of stubs.

	Utilities for command-line programs (pwkit.cli)

	Parsing keyword-style program arguments (pwkit.kwargv)
	Keyword Specification Format

	Command-line programs with sub-commands (pwkit.cli.multitool)

Utilities for command-line programs (pwkit.cli)

pwkit.cli - miscellaneous utilities for command-line programs.

Functions:

backtrace_on_usr1 - Make it so that a Python backtrace is printed on SIGUSR1.
check_usage - Print usage and exit if –help is in argv.
die - Print an error and exit.
fork_detached_process - Fork a detached process.
pop_option - Check for a single command-line option.
propagate_sigint - Ensure that calling shells know when we die from SIGINT.
show_usage - Print a usage message.
unicode_stdio - Ensure that sys.std{in,out,err} accept unicode strings.
warn - Print a warning.
wrong_usage - Print an error about wrong usage and the usage help.

Context managers:

print_tracebacks - Catch exceptions and print tracebacks without reraising them.

Submodules:

multitool - Framework for command-line programs with sub-commands.

	
pwkit.cli.check_usage(docstring, argv=None, usageifnoargs=False)

	Check if the program has been run with a –help argument; if so,
print usage information and exit.

	Parameters

	
	docstring (str [https://docs.python.org/3/library/stdtypes.html#str]) – the program help text

	argv – the program arguments; taken as sys.argv [https://docs.python.org/3/library/sys.html#sys.argv] if
given as None (the default). (Note that this implies
argv[0] should be the program name and not the first option.)

	usageifnoargs (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, usage information will be
printed and the program will exit if no command-line arguments are
passed. If “long”, print long usasge. Default is False.

This function is intended for small programs launched from the command
line. The intention is for the program help information to be written in
its docstring, and then for the preamble to contain something like:

"""myprogram - this is all the usage help you get"""
import sys
... # other setup
check_usage (__doc__)
... # go on with business

If it is determined that usage information should be shown,
show_usage() is called and the program exits.

See also wrong_usage().

	
pwkit.cli.die(fmt, *args)

	Raise a SystemExit [https://docs.python.org/3/library/exceptions.html#SystemExit] exception with a formatted error message.

	Parameters

	
	fmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – a format string

	args – arguments to the format string

If args is empty, a SystemExit [https://docs.python.org/3/library/exceptions.html#SystemExit] exception is raised with the
argument 'error: ' + str (fmt). Otherwise, the string component is
fmt % args. If uncaught, the interpreter exits with an error code and
prints the exception argument.

Example:

if ndim != 3:
 die ('require exactly 3 dimensions, not %d', ndim)

	
pwkit.cli.fork_detached_process()

	Fork this process, creating a subprocess detached from the current context.

Returns a pwkit.Holder instance with information about what
happened. Its fields are:

	whoami

	A string, either “original” or “forked” depending on which process we are.

	pipe

	An open binary file descriptor. It is readable by the original process
and writable by the forked one. This can be used to pass information
from the forked process to the one that launched it.

	forkedpid

	The PID of the forked process. Note that this process is not a child of
the original one, so waitpid() and friends may not be used on it.

Example:

from pwkit import cli

info = cli.fork_detached_process ()
if info.whoami == 'original':
 message = info.pipe.readline ().decode ('utf-8')
 if not len (message):
 cli.die ('forked process (PID %d) appears to have died', info.forkedpid)
 info.pipe.close ()
 print ('forked process said:', message)
else:
 info.pipe.write ('hello world'.encode ('utf-8'))
 info.pipe.close ()

As always, the vital thing to understand is that immediately after a
call to this function, you have two nearly-identical but entirely
independent programs that are now both running simultaneously. Until you
execute some kind of if statement, the only difference between the two
processes is the value of the info.whoami field and whether
info.pipe is readable or writeable.

This function uses os.fork() [https://docs.python.org/3/library/os.html#os.fork] twice and also calls os.setsid() [https://docs.python.org/3/library/os.html#os.setsid]
in between the two invocations, which creates new session and process
groups for the forked subprocess. It does not perform other operations
that you might want, such as changing the current directory, dropping
privileges, closing file descriptors, and so on. For more discussion of
best practices when it comes to “daemonizing” processes, see (stalled)
PEP 3143 [https://www.python.org/dev/peps/pep-3143/].

	
pwkit.cli.pop_option(ident, argv=None)

	A lame routine for grabbing command-line arguments. Returns a boolean
indicating whether the option was present. If it was, it’s removed from
the argument string. Because of the lame behavior, options can’t be
combined, and non-boolean options aren’t supported. Operates on sys.argv
by default.

Note that this will proceed merrily if argv[0] matches your option.

	
class pwkit.cli.print_tracebacks(types=(<class 'Exception'>,), header=None, file=None)

	Context manager that catches exceptions and prints their tracebacks without
reraising them. Intended for robust programs that want to continue
execution even if something bad happens; this provides the infrastructure
to swallow exceptions while still preserving exception information for
later debugging.

You can specify which exception classes to catch with the types keyword
argument to the constructor. The header keyword will be printed if
specified; this could be used to add contextual information. The file
keyword specifies the destination for the printed output; default is
sys.stderr.

Instances preserve the exception information in the fields ‘etype’,
‘evalue’, and ‘etb’ if your program in fact wants to do something with the
information. One basic use would be checking whether an exception did, in
fact, occur.

	
pwkit.cli.show_usage(docstring, short, stream, exitcode)

	Print program usage information and exit.

	Parameters

	docstring (str [https://docs.python.org/3/library/stdtypes.html#str]) – the program help text

This function just prints docstring and exits. In most cases, the
function check_usage() should be used: it automatically checks
sys.argv [https://docs.python.org/3/library/sys.html#sys.argv] for a sole “-h” or “–help” argument and invokes this
function.

This function is provided in case there are instances where the user
should get a friendly usage message that check_usage() doesn’t catch.
It can be contrasted with wrong_usage(), which prints a terser usage
message and exits with an error code.

	
pwkit.cli.unicode_stdio()

	Make sure that the standard I/O streams accept Unicode.

In Python 2, the standard I/O streams accept bytes, not Unicode
characters. This means that in principle every Unicode string that we want
to output should be encoded to utf-8 before print()ing. But Python 2.X has
a hack where, if the output is a terminal, it will automatically encode
your strings, using UTF-8 in most cases.

BUT this hack doesn’t kick in if you pipe your program’s output to another
program. So it’s easy to write a tool that works fine in most cases but then
blows up when you log its output to a file.

The proper solution is just to do the encoding right. This function sets
things up to do this in the most sensible way I can devise, if we’re
running on Python 2. This approach sets up compatibility with Python 3,
which has the stdio streams be in text mode rather than bytes mode to
begin with.

Basically, every command-line Python program should call this right at
startup. I’m tempted to just invoke this code whenever this module is
imported since I foresee many accidentally omissions of the call.

	
pwkit.cli.wrong_usage(docstring, *rest)

	Print a message indicating invalid command-line arguments and exit with an
error code.

	Parameters

	
	docstring (str [https://docs.python.org/3/library/stdtypes.html#str]) – the program help text

	rest – an optional specific error message

This function is intended for small programs launched from the command
line. The intention is for the program help information to be written in
its docstring, and then for argument checking to look something like
this:

"""mytask <input> <output>

Do something to the input to create the output.
"""
...
import sys
... # other setup
check_usage (__doc__)
... # more setup
if len (sys.argv) != 3:
 wrong_usage (__doc__, "expect exactly 2 arguments, not %d",
 len (sys.argv))

When called, an error message is printed along with the first stanza of
docstring. The program then exits with an error code and a suggestion to
run the program with a –help argument to see more detailed usage
information. The “first stanza” of docstring is defined as everything up
until the first blank line, ignoring any leading blank lines.

The optional message in rest is treated as follows. If rest is empty,
the error message “invalid command-line arguments” is printed. If it is a
single item, the stringification of that item is printed. If it is more
than one item, the first item is treated as a format string, and it is
percent-formatted with the remaining values. See the above example.

See also check_usage() and show_usage().

Parsing keyword-style program arguments (pwkit.kwargv)

The pwkit.kwargv module provides a framework for parsing
keyword-style arguments to command-line programs. It’s designed so that you
can easily make a routine with complex, structured configuration parameters
that can also be driven from the command line.

Keywords are defined by declaring a subclass of the
ParseKeywords class with fields corresponding to the
support keywords:

from pwkit.kwargv import ParseKeywords, Custom

class MyConfig(ParseKeywords):
 foo = 1
 bar = str
 multi = [int]
 extra = Custom(float, required=True)

 @Custom(str)
 def declination(value):
 from pwkit.astutil import parsedeglat
 return parsedeglat(value)

Instantiating the subclass fills in all defaults. Calling the
ParseKeywords.parse() method parses a list of strings (defaulting to
sys.argv[1:]) and updates the instance’s properties. This framework is
designed so that you can provide complex configuration to an algorithm either
programmatically, or on the command line. A typical use would be:

from pwkit.kwargv import ParseKeywords, Custom

class MyConfig(ParseKeywords):
 niter = 1
 input = str
 scales = [int]
 # ...

def my_complex_algorithm(cfg):
 from pwkit.io import Path
 data = Path(cfg.input).read_fits()

 for i in range(cfg.niter):
 #

def call_algorithm_in_code():
 cfg = MyConfig()
 cfg.input = 'testfile.fits'
 # ...
 my_complex_algorithm(cfg)

if __name__ == '__main__':
 cfg = MyConfig().parse()
 my_complex_algorithm(cfg)

You could then execute the module as a program and specify arguments in the
form ./program niter=5 input=otherfile.fits.

Keyword Specification Format

Arguments are specified in the following ways:

	foo = 1 defines a keyword with a default value, type inferred as
int. Likewise for str, bool, float.

	bar = str defines an string keyword with default value of None.
Likewise for int, bool, float.

	multi = [int] parses as a list of integers of any length, defaulting to
the empty list [] (I call these “flexible” lists.). List items are
separated by commas on the command line.

	other = [3.0, int] parses as a 2-element list, defaulting to [3.0,
None]. If one value is given, the first array item is parsed, and the
second is left as its default. (I call these “fixed” lists.)

	extra = Custom(float, required=True) parses like float and then
customizes keyword properties. Supported properties are the attributes of
the KeywordInfo class.

	Use Custom as a decorator (@Custom) on a function foo
defines a keyword foo that’s parsed according to the Custom
specification, then has its value fixed up by calling the foo() function
after the basic parsing. That is, the final value is foo
(intermediate_value). A common pattern is to use a fixup function for a
fixed list where the first few values are mandatory (see
KeywordInfo.minvals below) but later values can be guessed or
defaulted.

See the KeywordInfo documentation for specification of additional
keyword properties that may be specified. The Custom name is simply an
alias for KeywordInfo.

	
pwkit.kwargv.Custom

	alias of pwkit.kwargv.KeywordOptions

	
exception pwkit.kwargv.KwargvError(fmt, *args)

	Raised when invalid arguments have been provided.

	
exception pwkit.kwargv.ParseError(fmt, *args)

	Raised when the structure of the arguments appears legitimate, but a
particular value cannot be parsed into its expected type.

	
class pwkit.kwargv.KeywordInfo

	Properties that a keyword argument may have.

	
default = None

	The default value for the keyword if it’s left unspecified.

	
fixupfunc = None

	If not None, the final value of the keyword is set to the return value
of fixupfunc(intermediate_value).

	
maxvals = None

	The maximum number of values allowed. This only applies for flexible lists;
fixed lists have predetermined sizes.

	
minvals = 0

	The minimum number of values allowed in a flexible list, if the keyword is
specified at all. If you want minvals = 1, use required = True.

	
parser = None

	A callable used to convert the argument text to a Python value.
This attribute is assigned automatically upon setup.

	
printexc = False

	Print the exception as normal if there’s an exception when parsing the
keyword value. Otherwise there’s just a message along the lines of “cannot
parse value <val> for keyword <kw>”.

	
repeatable = False

	If true, the keyword value(s) will always be contained in a list. If they
keyword is specified multiple times (i.e. ./program kw=1 kw=2), the
list will have multiple items (cfg.kw = [1, 2]). If the keyword is
list-valued, using this will result in a list of lists.

	
required = False

	Whether an error should be raised if the keyword is not seen while
parsing.

	
scale = None

	If not None, multiply numeric values by this number after parsing.

	
sep = ','

	The textual separator between items for list-valued keywords.

	
uiname = None

	The name of the keyword as parsed from the command-line. For instance,
some_value = Custom(int, uiname="some-value") will result in a
keyword that the user sets by calling ./program some-value=3. This
provides a mechanism to support keyword names that are not legal Python
identifiers.

	
class pwkit.kwargv.ParseKeywords

	The template class for defining your keyword arguments. A subclass of
pwkit.Holder. Declare attributes in a subclass following the
scheme described above, then call the ParseKeywords.parse() method.

	
parse(args=None)

	Parse textual keywords as described by this class’s attributes, and update
this instance’s attributes with the parsed values. args is a list of
strings; if None, it defaults to sys.argv[1:]. Returns self
for convenience. Raises KwargvError if invalid keywords are
encountered.

See also ParseKeywords.parse_or_die().

	
parse_or_die(args=None)

	Like ParseKeywords.parse(), but calls pkwit.cli.die() if a
KwargvError is raised, printing the exception text. Returns
self for convenience.

	
pwkit.kwargv.basic(args=None)

	Parse the string list args as a set of keyword arguments in a very
simple-minded way, splitting on equals signs. Returns a
pwkit.Holder instance with attributes set to strings. The form
+foo is mapped to setting foo = True on the pwkit.Holder
instance. If args is None, sys.argv[1:] is used. Raises
KwargvError on invalid arguments (i.e., ones without an equals sign
or a leading plus sign).

Command-line programs with sub-commands (pwkit.cli.multitool)

pwkit.cli.multitool - Framework for command-line tools with sub-commands

This module provides a framework for quickly creating command-line programs
that have multiple independent sub-commands (similar to the way Git’s
interface works).

Classes:

	Command

	A command supported by the tool.

	DelegatingCommand

	A command that delegates to named sub-commands.

	HelpCommand

	A command that prints the help for other commands.

	Multitool

	The tool itself.

	UsageError

	Raised if illegal command-line arguments are used.

Functions:

	invoke_tool

	Run as a tool and exit.

Standard usage:

class MyCommand (multitool.Command):
 name = 'info'
 summary = 'Do something useful.'

 def invoke (self, args, **kwargs):
 print ('hello')

class MyTool (multitool.MultiTool):
 cli_name = 'mytool'
 summary = 'Do several useful things.'

HelpCommand = multitool.HelpCommand # optional

def commandline ():
 multitool.invoke_tool (globals ())

	
pwkit.cli.multitool.invoke_tool(namespace, tool_class=None)

	Invoke a tool and exit.

namespace is a namespace-type dict from which the tool is initialized.
It should contain exactly one value that is a Multitool subclass, and
this subclass will be instantiated and populated (see
Multitool.populate()) using the other items in the namespace. Instances
and subclasses of Command will therefore be registered with the
Multitool. The tool is then invoked.

pwkit.cli.propagate_sigint() and pwkit.cli.unicode_stdio() are called
at the start of this function. It should therefore be only called immediately
upon startup of the Python interpreter.

This function always exits with an exception. The exception will be
SystemExit (0) in case of success.

The intended invocation is invoke_tool (globals ()) in some module that
defines a Multitool subclass and multiple Command subclasses.

If tool_class is not None, this is used as the tool class rather than
searching namespace, potentially avoiding problems with modules
containing multiple Multitool implementations.

	
class pwkit.cli.multitool.Command

	A command in a multifunctional CLI tool.

For historical reasons, this class defaults to a homebrew argument parsing
system. Use ArgparsingCommand for a better system based on the
argparse module.

Attributes:

	argspec

	One-line string summarizing the command-line arguments
that should be passed to this command.

	help_if_no_args

	If True, usage help will automatically be displayed if
no command-line arguments are given.

	more_help

	Additional help text to be displayed below the summary
(optional).

	name

	The command’s name, as should be specified at the CLI.

	summary

	A one-line summary of this command’s functionality.

Functions:

	invoke(self, args, **kwargs)

	Execute this command.

‘name’ must be set; other attributes are optional, although at least
‘summary’ and ‘argspec’ should be set. ‘invoke()’ must be implemented.

	
invoke(args, **kwargs)

	Invoke this command. ‘args’ is a list of the remaining command-line
arguments. ‘kwargs’ contains at least ‘argv0’, which is the equivalent
of, well, argv[0] for this command; ‘tool’, the originating
Multitool instance; and ‘parent’, the parent DelegatingCommand
instance. Other kwargs may be added in an application-specific manner.
Basic processing of ‘–help’ will already have been done if invoked
through invoke_with_usage().

	
invoke_with_usage(args, **kwargs)

	Invoke the command with standardized usage-help processing. Same calling
convention as Command.invoke().

	
class pwkit.cli.multitool.DelegatingCommand(populate_from_self=True)

	A command that delegates to sub-commands.

Attributes:

	cmd_desc

	The noun used to desribe the sub-commands.

	usage_tmpl

	A formatting template for long tool usage. The default
is almost surely acceptable.

Functions:

	register

	Register a new sub-command.

	populate

	Register many sub-commands automatically.

	
invoke(args, **kwargs)

	Invoke this command. ‘args’ is a list of the remaining command-line
arguments. ‘kwargs’ contains at least ‘argv0’, which is the equivalent
of, well, argv[0] for this command; ‘tool’, the originating
Multitool instance; and ‘parent’, the parent DelegatingCommand
instance. Other kwargs may be added in an application-specific manner.
Basic processing of ‘–help’ will already have been done if invoked
through invoke_with_usage().

	
invoke_command(cmd, args, **kwargs)

	This function mainly exists to be overridden by subclasses.

	
populate(values)

	Register multiple new commands by investigating the iterable values. For
each item in values, instances of Command are registered, and
subclasses of Command are instantiated (with no arguments passed to
the constructor) and registered. Other kinds of values are ignored.
Returns ‘self’.

	
register(cmd)

	Register a new command with the tool. ‘cmd’ is expected to be an instance
of Command, although here only the cmd.name attribute is
investigated. Multiple commands with the same name are not allowed to
be registered. Returns ‘self’.

	
class pwkit.cli.multitool.HelpCommand

	
	
invoke(args, parent=None, parent_kwargs=None, **kwargs)

	Invoke this command. ‘args’ is a list of the remaining command-line
arguments. ‘kwargs’ contains at least ‘argv0’, which is the equivalent
of, well, argv[0] for this command; ‘tool’, the originating
Multitool instance; and ‘parent’, the parent DelegatingCommand
instance. Other kwargs may be added in an application-specific manner.
Basic processing of ‘–help’ will already have been done if invoked
through invoke_with_usage().

	
class pwkit.cli.multitool.Multitool

	A command-line tool with multiple sub-commands.

Attributes:

cli_name - The usual name of this tool on the command line.
more_help - Additional help text.
summary - A one-line summary of this tool’s functionality.

Functions:

commandline - Execute a command as if invoked from the command-line.
register - Register a new command.
populate - Register many commands automatically.

	
commandline(argv)

	Run as if invoked from the command line. ‘argv’ is a Unix-style list of
arguments, where the zeroth item is the program name (which is ignored
here). Usage help is printed if deemed appropriate (e.g., no arguments
are given). This function always terminates with an exception, with
the exception being a SystemExit(0) in case of success.

Note that we don’t actually use argv[0] to set argv0 because it
will generally be the full path to the script name, which is
unattractive.

	
exception pwkit.cli.multitool.UsageError(fmt, *args)

	Raised if illegal command-line arguments are used in a Multitool
program.

Behind-the-scenes infrastructure

This documentation has a lot of stubs.

	Interfacing with other software environments (pwkit.environments)

	Helper for decorators on class methods (pwkit.method_decorator)

Interfacing with other software environments (pwkit.environments)

pwkit.environments - working with external software environments

Classes:

Environment - base class for launching programs in an external environment.

Submodules:

heasoft - HEAsoft
sas - SAS

Functions:

prepend_environ_path - Prepend into a $PATH in an environment dict.
prepend_path - Prepend text into a $PATH-like environment variable.
user_data_path - Generate paths for storing miscellaneous user data.

Standard usage is to create an Environment instance, then use its
launch(argv, …) method to run programs in the specified environment.
launch() returns a subprocess.Popen instance that can be used in the
standard ways.

	
pwkit.environments.prepend_environ_path(env, name, text, pathsep=':')

	Prepend text into a $PATH-like environment variable. env is a
dictionary of environment variables and name is the variable name.
pathsep is the character separating path elements, defaulting to
os.pathsep. The variable will be created if it is not already in env.
Returns env.

Example:

prepend_environ_path(env, 'PATH', '/mypackage/bin')

The name and text arguments should be str objects; that is, bytes in
Python 2 and Unicode in Python 3. Literal strings will be OK unless you
use the from __future__ import unicode_literals feature.

	
pwkit.environments.prepend_path(orig, text, pathsep=':')

	Returns a $PATH-like environment variable with text prepended. orig is
the original variable value, or None. pathsep is the character
separating path elements, defaulting to os.pathsep.

Example:

newpath = cli.prepend_path(oldpath, ‘/mypackage/bin’)

See also prepend_environ_path.

Helper for decorators on class methods (pwkit.method_decorator)

Python decorator that knows the class the decorated method is bound to.

Please see full description here:
https://github.com/denis-ryzhkov/method_decorator/blob/master/README.md

method_decorator version 0.1.3
Copyright (C) 2013 by Denis Ryzhkov <denisr@denisr.com>
MIT License, see http://opensource.org/licenses/MIT

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pwkit	
 core abstractions for :mod:`pwkit`

 	
 	
 pwkit.astimage	
 File-format-agnostic loading of astronomical images

 	
 	
 pwkit.astutil	
 basic astronomical utilities

 	
 	
 pwkit.bblocks	

 	
 	
 pwkit.cgs	
 constants in cgs units

 	
 	
 pwkit.cli	

 	
 	
 pwkit.cli.astrotool	
 Quick astronomical calculations from the command line

 	
 	
 pwkit.cli.imtool	
 Quick astronomical image operations from the command line

 	
 	
 pwkit.cli.latexdriver	
 Just compile the document

 	
 	
 pwkit.cli.multitool	

 	
 	
 pwkit.cli.wrapout	

 	
 	
 pwkit.colormaps	

 	
 	
 pwkit.contours	

 	
 	
 pwkit.data_gui_helpers	

 	
 	
 pwkit.dulk_models	
 simple synchrotron radiation emission coefficients

 	
 	
 pwkit.ellipses	
 Representations of and computations with ellipses

 	
 	
 pwkit.environments	

 	
 	
 pwkit.environments.casa	
 access to CASA via the :mod:`pwkit.environments` framework

 	
 	
 pwkit.environments.casa.dftdynspec	
 dynamic spectra of point sources via DFT

 	
 	
 pwkit.environments.casa.dftphotom	
 Light curves from interferometric visibilities

 	
 	
 pwkit.environments.casa.scripting	

 	
 	
 pwkit.environments.casa.spwglue	

 	
 	
 pwkit.environments.casa.tasks	
 programmatic access to CASA tasks

 	
 	
 pwkit.environments.casa.util	
 low-level CASA tools and utilities

 	
 	
 pwkit.environments.ciao	

 	
 	
 pwkit.environments.heasoft	
 access to HEASoft via the :mod:`pwkit.environments` framework

 	
 	
 pwkit.environments.sas	
 Interacting with the SAS software system

 	
 	
 pwkit.environments.sas.data	
 Read and write various SAS data file formats

 	
 	
 pwkit.fk10	
 run the Fleischman & Kuznetsov (2010) synchrotron code

 	
 	
 pwkit.immodel	
 Modeling sources in images

 	
 	
 pwkit.inifile	

 	
 	
 pwkit.io	
 basic utilities for file input and output

 	
 	
 pwkit.kbn_conf	
 Bayesian confidence intervals for count rates

 	
 	
 pwkit.kwargv	
 Parse keyword-style arguments to command-line programs

 	
 	
 pwkit.latex	

 	
 	
 pwkit.lmmin	
 Levenberg-Marquardt minimization with a nice API

 	
 	
 pwkit.lsqmdl	
 Fitting generic models with least-squares minimization

 	
 	
 pwkit.method_decorator	

 	
 	
 pwkit.msmt	

 	
 	
 pwkit.numutil	
 low-level numerical utilities

 	
 	
 pwkit.parallel	
 Infrastructure for parallel processing

 	
 	
 pwkit.pdm	

 	
 	
 pwkit.phoenix	

 	
 	
 pwkit.radio_cal_models	
 Flux density models of radio calibrators

 	
 	
 pwkit.sherpa	
 helpers for X-ray spectral modeling with Sherpa

 	
 	
 pwkit.simpleenum	
 Quickly create enumerations of constant values.

 	
 	
 pwkit.slurp	
 streaming output from other programs

 	
 	
 pwkit.synphot	
 synthetic photometry

 	
 	
 pwkit.tabfile	
 Typed, tabular data

 	
 	
 pwkit.tinifile	

 	
 	
 pwkit.ucd_physics	
 Physical models relating to low-mass stars and brown dwarfs

 	
 	
 pwkit.unicode_to_latex	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	abcd2() (in module pwkit.ellipses)

 	abcell() (in module pwkit.ellipses)

 	abmag_to_flam_ang() (in module pwkit.synphot)

 	abmag_to_fnu_cgs() (in module pwkit.synphot)

 	abs2app() (in module pwkit.astutil)

 	absolute() (pwkit.io.Path method)

 	add() (pwkit.lsqmdl.SeriesComponent method)

 	addcol() (pwkit.latex.TableBuilder method)

 	AddConstantComponent (class in pwkit.lsqmdl)

 	addhcline() (pwkit.latex.TableBuilder method)

 	AddPolynomialComponent (class in pwkit.lsqmdl)

 	AddValuesComponent (class in pwkit.lsqmdl)

 	AlignedNumberFormatter (class in pwkit.latex)

 	AlreadyDefinedError (class in pwkit.synphot)

 	
 	analytic_2d() (in module pwkit.contours)

 	anchor (pwkit.io.Path attribute)

 	angcen() (in module pwkit.astutil)

 	app2abs() (in module pwkit.astutil)

 	applycal() (in module pwkit.environments.casa.tasks)

 	ApplycalConfig (class in pwkit.environments.casa.tasks)

 	argv (pwkit.slurp.Slurper attribute)

 	array (pwkit.environments.casa.dftphotom.Config attribute)

 	as_hdf_store() (pwkit.io.Path method)

 	as_nonlinear() (pwkit.lsqmdl.PolynomialModel method)

 	as_uri() (pwkit.io.Path method)

 	AstroImage (class in pwkit.astimage)

 	AstrometryInfo (class in pwkit.astutil)

 	axdescs (pwkit.astimage.AstroImage attribute)

B

 	
 	band (pwkit.synphot.Bandpass attribute)

 	Bandpass (class in pwkit.synphot)

 	bands() (pwkit.synphot.Registry method)

 	baseline (pwkit.environments.casa.dftphotom.Config attribute)

 	BaseSASData (class in pwkit.environments.sas.data)

 	basic() (in module pwkit.kwargv)

 	BasicFormatter (class in pwkit.latex)

 	bcj_from_spt() (in module pwkit.ucd_physics)

 	bck_from_spt() (in module pwkit.ucd_physics)

 	believeweights (pwkit.environments.casa.dftphotom.Config attribute)

 	bin_bblock() (in module pwkit.bblocks)

 	bivabc() (in module pwkit.ellipses)

 	
 	bivell() (in module pwkit.ellipses)

 	bivnorm() (in module pwkit.ellipses)

 	bivrandom() (in module pwkit.ellipses)

 	blackbody() (pwkit.synphot.Bandpass method)

 	bmaj (pwkit.astimage.AstroImage attribute)

 	bmin (pwkit.astimage.AstroImage attribute)

 	BoolFormatter (class in pwkit.latex)

 	bpa (pwkit.astimage.AstroImage attribute)

 	bpplot() (in module pwkit.environments.casa.tasks)

 	BpplotConfig (class in pwkit.environments.casa.tasks)

 	broadcastize() (in module pwkit.numutil)

 	bs_tt_bblock() (in module pwkit.bblocks)

 	builtin_registrars (in module pwkit.synphot)

C

 	
 	calc_freefree_eta() (in module pwkit.dulk_models)

 	calc_freefree_kappa() (in module pwkit.dulk_models)

 	calc_freefree_snu_ujy() (in module pwkit.dulk_models)

 	calc_gs_eta() (in module pwkit.dulk_models)

 	calc_gs_kappa() (in module pwkit.dulk_models)

 	calc_gs_snu_ujy() (in module pwkit.dulk_models)

 	calc_halfmax_points() (pwkit.synphot.Bandpass method)

 	calc_nu_b() (in module pwkit.dulk_models)

 	calc_pivot_wavelength() (pwkit.synphot.Bandpass method)

 	calc_snu() (in module pwkit.dulk_models)

 	calc_synch_eta() (in module pwkit.dulk_models)

 	calc_synch_kappa() (in module pwkit.dulk_models)

 	calc_synch_snu_ujy() (in module pwkit.dulk_models)

 	Calculator (class in pwkit.fk10)

 	cas_a() (in module pwkit.radio_cal_models)

 	CasapyScript (class in pwkit.environments.casa.scripting)

 	charfreq (pwkit.astimage.AstroImage attribute)

 	check_usage() (in module pwkit.cli)

 	chisq (pwkit.lsqmdl.ModelBase attribute)

 	chmod() (pwkit.io.Path method)

 	CiaoTool (class in pwkit.environments.ciao)

 	
 	clearcal() (in module pwkit.environments.casa.tasks)

 	clscale() (in module pwkit.ellipses)

 	colinfo() (pwkit.latex.AlignedNumberFormatter method)

 	(pwkit.latex.BasicFormatter method)

 	(pwkit.latex.BoolFormatter method)

 	(pwkit.latex.LimitFormatter method)

 	(pwkit.latex.MaybeNumberFormatter method)

 	(pwkit.latex.UncertFormatter method)

 	Command (class in pwkit.cli.multitool)

 	commandline() (pwkit.cli.multitool.Multitool method)

 	ComposedModel (class in pwkit.lsqmdl)

 	concat() (in module pwkit.environments.casa.tasks)

 	Config (class in pwkit.environments.casa.dftphotom)

 	(class in pwkit.environments.casa.spwglue)

 	copy() (pwkit.Holder method)

 	copy_to() (pwkit.io.Path method)

 	counts (pwkit.environments.casa.dftdynspec.Loader attribute)

 	covar (pwkit.lsqmdl.ModelBase attribute)

 	create_tempfile() (pwkit.io.Path class method)

 	Custom (in module pwkit.kwargv)

 	cwd (pwkit.slurp.Slurper attribute)

 	cwd() (pwkit.io.Path class method)

D

 	
 	data (pwkit.lsqmdl.ModelBase attribute)

 	data_frame_to_astropy_table() (in module pwkit.numutil)

 	data_to_argb32() (in module pwkit.data_gui_helpers)

 	data_to_imagesurface() (in module pwkit.data_gui_helpers)

 	databiv() (in module pwkit.ellipses)

 	datacol (pwkit.environments.casa.dftphotom.Config attribute)

 	datadir() (in module pwkit.environments.casa.util)

 	datascale (pwkit.environments.casa.dftphotom.Config attribute)

 	debug_derivative() (pwkit.lsqmdl.ComposedModel method)

 	dec (pwkit.astutil.AstrometryInfo attribute)

 	default (pwkit.kwargv.KeywordInfo attribute)

 	delcal() (in module pwkit.environments.casa.tasks)

 	DelegatingCommand (class in pwkit.cli.multitool)

 	delmod_cli() (in module pwkit.environments.casa.tasks)

 	
 	deriv() (pwkit.lsqmdl.AddConstantComponent method)

 	(pwkit.lsqmdl.AddPolynomialComponent method)

 	(pwkit.lsqmdl.AddValuesComponent method)

 	(pwkit.lsqmdl.MatMultComponent method)

 	(pwkit.lsqmdl.ModelComponent method)

 	(pwkit.lsqmdl.ScaleComponent method)

 	(pwkit.lsqmdl.SeriesComponent method)

 	derive_identity_arf() (in module pwkit.sherpa)

 	derive_identity_rmf() (in module pwkit.sherpa)

 	dfsmooth() (in module pwkit.numutil)

 	dftphotom() (in module pwkit.environments.casa.dftphotom)

 	dftphotom_cli() (in module pwkit.environments.casa.dftphotom)

 	die() (in module pwkit.cli)

 	djoin() (in module pwkit.io)

 	drive (pwkit.io.Path attribute)

E

 	
 	ellabc() (in module pwkit.ellipses)

 	ellbiv() (in module pwkit.ellipses)

 	elld2() (in module pwkit.ellipses)

 	ellplot() (in module pwkit.ellipses)

 	ellpoint() (in module pwkit.ellipses)

 	elplot() (in module pwkit.environments.casa.tasks)

 	ElplotConfig (class in pwkit.environments.casa.tasks)

 	encoding (pwkit.slurp.Slurper attribute)

 	ensure_dir() (in module pwkit.io)

 	(pwkit.io.Path method)

 	ensure_parent() (pwkit.io.Path method)

 	ensure_symlink() (in module pwkit.io)

 	enumeration() (in module pwkit.simpleenum)

 	env (pwkit.slurp.Slurper attribute)

 	
 	errinfo() (in module pwkit.msmt)

 	Events (class in pwkit.environments.sas.data)

 	executable (pwkit.slurp.Slurper attribute)

 	exists() (pwkit.io.Path method)

 	expand() (pwkit.io.Path method)

 	expand_rmf_matrix() (in module pwkit.sherpa)

 	extract() (pwkit.lsqmdl.AddConstantComponent method)

 	(pwkit.lsqmdl.AddPolynomialComponent method)

 	(pwkit.lsqmdl.AddValuesComponent method)

 	(pwkit.lsqmdl.MatMultComponent method)

 	(pwkit.lsqmdl.ModelComponent method)

 	(pwkit.lsqmdl.ScaleComponent method)

 	(pwkit.lsqmdl.SeriesComponent method)

 	extractbpflags() (in module pwkit.environments.casa.tasks)

F

 	
 	field (pwkit.environments.casa.dftphotom.Config attribute)

 	fill_from_allwise() (pwkit.astutil.AstrometryInfo method)

 	fill_from_simbad() (pwkit.astutil.AstrometryInfo method)

 	finalize_setup() (pwkit.lsqmdl.MatMultComponent method)

 	(pwkit.lsqmdl.ModelComponent method)

 	(pwkit.lsqmdl.ScaleComponent method)

 	(pwkit.lsqmdl.SeriesComponent method)

 	find_gamma_params() (in module pwkit.msmt)

 	find_rt_coefficients() (pwkit.fk10.Calculator method)

 	find_rt_coefficients_tot_intens() (pwkit.fk10.Calculator method)

 	fits_recarray_to_data_frame() (in module pwkit.numutil)

 	FITSImage (class in pwkit.astimage)

 	fixupfunc (pwkit.kwargv.KeywordInfo attribute)

 	flagcmd() (in module pwkit.environments.casa.tasks)

 	FlagcmdConfig (class in pwkit.environments.casa.tasks)

 	flaglist() (in module pwkit.environments.casa.tasks)

 	FlaglistConfig (class in pwkit.environments.casa.tasks)

 	flagmanager_cli() (in module pwkit.environments.casa.tasks)

 	flagzeros() (in module pwkit.environments.casa.tasks)

 	
 	FlagzerosConfig (class in pwkit.environments.casa.tasks)

 	flam_ang_to_fnu_cgs() (in module pwkit.synphot)

 	flat_ee_bandpass_pivot_wavelength() (in module pwkit.synphot)

 	fluxscale() (in module pwkit.environments.casa.tasks)

 	FluxscaleConfig (class in pwkit.environments.casa.tasks)

 	fmtdeglat() (in module pwkit.astutil)

 	fmtdeglon() (in module pwkit.astutil)

 	fmthours() (in module pwkit.astutil)

 	fmtinfo() (in module pwkit.msmt)

 	fmtradec() (in module pwkit.astutil)

 	fnu_cgs_to_flam_ang() (in module pwkit.synphot)

 	fork_detached_process() (in module pwkit.cli)

 	forkandlog() (in module pwkit.environments.casa.util)

 	format (pwkit.environments.casa.dftphotom.Config attribute)

 	format() (pwkit.io.Path method)

 	freqs (pwkit.environments.casa.dftdynspec.Loader attribute)

 	from_pcount() (pwkit.msmt.Uval static method)

 	ft() (in module pwkit.environments.casa.tasks)

 	FtConfig (class in pwkit.environments.casa.tasks)

G

 	
 	gaincal() (in module pwkit.environments.casa.tasks)

 	GaincalConfig (class in pwkit.environments.casa.tasks)

 	gaussian_convolve() (in module pwkit.astutil)

 	gaussian_deconvolve() (in module pwkit.astutil)

 	gencal() (in module pwkit.environments.casa.tasks)

 	GencalConfig (class in pwkit.environments.casa.tasks)

 	get() (pwkit.Holder method)

 	(pwkit.synphot.Registry method)

 	get_2mass_epoch() (in module pwkit.astutil)

 	get_bkg_qq_data() (in module pwkit.sherpa)

 	get_map() (pwkit.parallel.ParallelHelper method)

 	get_parent() (pwkit.io.Path method)

 	get_ppmap() (pwkit.parallel.ParallelHelper method)

 	
 	get_simbad_astrometry_info() (in module pwkit.astutil)

 	get_source_qq_data() (in module pwkit.sherpa)

 	get_std_registry() (in module pwkit.synphot)

 	get_stderr_bytes() (in module pwkit.io)

 	get_stdout_bytes() (in module pwkit.io)

 	getopacities() (in module pwkit.environments.casa.tasks)

 	ghz_to_ang() (in module pwkit.synphot)

 	glob() (pwkit.io.Path method)

 	gpdetrend() (in module pwkit.environments.casa.tasks)

 	GpdetrendConfig (class in pwkit.environments.casa.tasks)

 	gpplot() (in module pwkit.environments.casa.tasks)

 	GpplotConfig (class in pwkit.environments.casa.tasks)

 	GTIData (class in pwkit.environments.sas.data)

H

 	
 	hackfield (pwkit.environments.casa.spwglue.Config attribute)

 	halfmax_points() (pwkit.synphot.Bandpass method)

 	has() (pwkit.Holder method)

 	
 	HelpCommand (class in pwkit.cli.multitool)

 	Holder (class in pwkit)

 	Holder() (in module pwkit)

 	HumaneOutputFormat (class in pwkit.environments.casa.dftphotom)

I

 	
 	image2fits() (in module pwkit.environments.casa.tasks)

 	imags (pwkit.environments.casa.dftdynspec.Loader attribute)

 	imin (pwkit.pdm.PDMResult attribute)

 	importalma() (in module pwkit.environments.casa.tasks)

 	importevla() (in module pwkit.environments.casa.tasks)

 	index (pwkit.lsqmdl.Parameter attribute)

 	InifileError

 	init_cas_a() (in module pwkit.radio_cal_models)

 	InterruptiblePool (class in pwkit.parallel)

 	INVERSE_C_NSM (in module pwkit.environments.casa.util)

 	INVERSE_C_SM (in module pwkit.environments.casa.util)

 	invoke() (pwkit.cli.multitool.Command method)

 	(pwkit.cli.multitool.DelegatingCommand method)

 	(pwkit.cli.multitool.HelpCommand method)

 	
 	invoke_command() (pwkit.cli.multitool.DelegatingCommand method)

 	(pwkit.environments.ciao.CiaoTool method)

 	invoke_tool() (in module pwkit.cli.multitool)

 	invoke_with_usage() (pwkit.cli.multitool.Command method)

 	invsigma (pwkit.lsqmdl.ModelBase attribute)

 	is_absolute() (pwkit.io.Path method)

 	is_block_device() (pwkit.io.Path method)

 	is_char_device() (pwkit.io.Path method)

 	is_dir() (pwkit.io.Path method)

 	is_fifo() (pwkit.io.Path method)

 	is_file() (pwkit.io.Path method)

 	is_socket() (pwkit.io.Path method)

 	is_symlink() (pwkit.io.Path method)

 	iterdir() (pwkit.io.Path method)

J

 	
 	joinpath() (pwkit.io.Path method)

 	
 	jy_to_flam() (pwkit.synphot.Bandpass method)

K

 	
 	kbn_conf() (in module pwkit.kbn_conf)

 	
 	KeywordInfo (class in pwkit.kwargv)

 	KwargvError

L

 	
 	latexify() (in module pwkit.latex)

 	latexify_l3col() (in module pwkit.latex)

 	latexify_n2col() (in module pwkit.latex)

 	latexify_u3col() (in module pwkit.latex)

 	Lightcurve (class in pwkit.environments.sas.data)

 	liminfo() (in module pwkit.msmt)

 	LimitError

 	LimitFormatter (class in pwkit.latex)

 	limtype() (in module pwkit.msmt)

 	(pwkit.msmt.Textual method)

 	
 	linebreak (pwkit.slurp.Slurper attribute)

 	listobs() (in module pwkit.environments.casa.tasks)

 	listsdm() (in module pwkit.environments.casa.tasks)

 	lm_prob (pwkit.lsqmdl.Model attribute)

 	load_bcah98_mass_radius() (in module pwkit.ucd_physics)

 	load_skyfield_data() (in module pwkit.astutil)

 	load_spectrum() (in module pwkit.phoenix)

 	Loader (class in pwkit.environments.casa.dftdynspec)

 	logger() (in module pwkit.environments.casa.util)

 	loglevel (pwkit.environments.casa.dftphotom.Config attribute)

 	Lval (class in pwkit.msmt)

M

 	
 	mag_to_flam() (pwkit.synphot.Bandpass method)

 	mag_to_fnu() (pwkit.synphot.Bandpass method)

 	make_fixed_temp_multi_apec() (in module pwkit.sherpa)

 	make_frozen_func() (pwkit.lsqmdl.ComposedModel method)

 	(pwkit.lsqmdl.Model method)

 	(pwkit.lsqmdl.ModelBase method)

 	(pwkit.lsqmdl.PolynomialModel method)

 	(pwkit.lsqmdl.ScaleModel method)

 	make_multi_qq_plots() (in module pwkit.sherpa)

 	make_multi_spectrum_plots() (in module pwkit.sherpa)

 	make_parallel_helper() (in module pwkit.parallel)

 	make_path_func() (in module pwkit.io)

 	make_qq_plot() (in module pwkit.sherpa)

 	make_relative() (pwkit.io.Path method)

 	make_spectrum_plot() (in module pwkit.sherpa)

 	make_step_lcont() (in module pwkit.numutil)

 	make_step_rcont() (in module pwkit.numutil)

 	make_tempfile() (pwkit.io.Path method)

 	make_tophat_ee() (in module pwkit.numutil)

 	make_tophat_ei() (in module pwkit.numutil)

 	make_tophat_ie() (in module pwkit.numutil)

 	make_tophat_ii() (in module pwkit.numutil)

 	mass_from_j() (in module pwkit.ucd_physics)

 	match() (pwkit.io.Path method)

 	MatMultComponent (class in pwkit.lsqmdl)

 	maxvals (pwkit.kwargv.KeywordInfo attribute)

 	MaybeNumberFormatter (class in pwkit.latex)

 	mc_pmins (pwkit.pdm.PDMResult attribute)

 	mc_puncert (pwkit.pdm.PDMResult attribute)

 	mc_pvalue (pwkit.pdm.PDMResult attribute)

 	
 	mc_tmins (pwkit.pdm.PDMResult attribute)

 	mdata (pwkit.lsqmdl.ModelBase attribute)

 	meanbp (pwkit.environments.casa.spwglue.Config attribute)

 	mfsclean() (in module pwkit.environments.casa.tasks)

 	MfscleanConfig (class in pwkit.environments.casa.tasks)

 	mfunc (pwkit.lsqmdl.ModelBase attribute)

 	minvals (pwkit.kwargv.KeywordInfo attribute)

 	MIRIADImage (class in pwkit.astimage)

 	mjd (pwkit.astimage.AstroImage attribute)

 	mjd2date() (in module pwkit.environments.casa.tasks)

 	mjds (pwkit.environments.casa.dftdynspec.Loader attribute)

 	mk_radius_from_mass_bcah98() (in module pwkit.ucd_physics)

 	mkdir() (pwkit.io.Path method)

 	Model (class in pwkit.lsqmdl)

 	model() (pwkit.lsqmdl.AddConstantComponent method)

 	(pwkit.lsqmdl.AddPolynomialComponent method)

 	(pwkit.lsqmdl.AddValuesComponent method)

 	(pwkit.lsqmdl.MatMultComponent method)

 	(pwkit.lsqmdl.ModelComponent method)

 	(pwkit.lsqmdl.ScaleComponent method)

 	(pwkit.lsqmdl.SeriesComponent method)

 	ModelBase (class in pwkit.lsqmdl)

 	ModelComponent (class in pwkit.lsqmdl)

 	msselect_keys (in module pwkit.environments.casa.util)

 	mstransform() (in module pwkit.environments.casa.tasks)

 	MstransformConfig (class in pwkit.environments.casa.tasks)

 	multiprocessing_ppmap_worker() (in module pwkit.parallel)

 	MultiprocessingPoolHelper (class in pwkit.parallel)

 	Multitool (class in pwkit.cli.multitool)

 	mutate_stream() (in module pwkit.inifile)

N

 	
 	n_freqs (pwkit.environments.casa.dftdynspec.Loader attribute)

 	n_mjds (pwkit.environments.casa.dftdynspec.Loader attribute)

 	name (pwkit.io.Path attribute)

 	(pwkit.lsqmdl.Parameter attribute)

 	
 	native_flux_kind (pwkit.synphot.Bandpass attribute)

 	NotDefinedError (class in pwkit.synphot)

O

 	
 	observation (pwkit.environments.casa.dftphotom.Config attribute)

 	offset_cbrt() (pwkit.data_gui_helpers.Stretcher method)

 	
 	open() (pwkit.io.Path method)

 	orientcen() (in module pwkit.astutil)

 	outstream (pwkit.environments.casa.dftphotom.Config attribute)

P

 	
 	p_side() (pwkit.lmmin.Problem method)

 	page_data_frame() (in module pwkit.numutil)

 	PandasOutputFormat (class in pwkit.environments.casa.dftphotom)

 	parallax (pwkit.astutil.AstrometryInfo attribute)

 	parallel_newton() (in module pwkit.numutil)

 	parallel_quad() (in module pwkit.numutil)

 	ParallelHelper (class in pwkit.parallel)

 	Parameter (class in pwkit.lsqmdl)

 	params (pwkit.lsqmdl.ModelBase attribute)

 	parang() (in module pwkit.astutil)

 	parent (pwkit.io.Path attribute)

 	parents (pwkit.io.Path attribute)

 	parse() (pwkit.kwargv.ParseKeywords method)

 	parse_or_die() (pwkit.kwargv.ParseKeywords method)

 	parsedeglat() (in module pwkit.astutil)

 	parsedeglon() (in module pwkit.astutil)

 	ParseError

 	parsehours() (in module pwkit.astutil)

 	ParseKeywords (class in pwkit.kwargv)

 	parser (pwkit.kwargv.KeywordInfo attribute)

 	parts (pwkit.io.Path attribute)

 	Path (class in pwkit.io)

 	Path() (pwkit.io.Path method)

 	pathlines() (in module pwkit.io)

 	pathwords() (in module pwkit.io)

 	pclat (pwkit.astimage.AstroImage attribute)

 	pclon (pwkit.astimage.AstroImage attribute)

 	pdm() (in module pwkit.pdm)

 	PDMResult (class in pwkit.pdm)

 	pivot_wavelength() (pwkit.synphot.Bandpass method)

 	pivot_wavelength_ee() (in module pwkit.synphot)

 	pivot_wavelength_qe() (in module pwkit.synphot)

 	PKError (class in pwkit)

 	plot() (pwkit.lsqmdl.ModelBase method)

 	plotants() (in module pwkit.environments.casa.tasks)

 	plotcal() (in module pwkit.environments.casa.tasks)

 	PlotcalConfig (class in pwkit.environments.casa.tasks)

 	pmin (pwkit.pdm.PDMResult attribute)

 	pnames (pwkit.lsqmdl.ModelBase attribute)

 	pol_is_intensity (in module pwkit.environments.casa.util)

 	pol_names (in module pwkit.environments.casa.util)

 	pol_to_miriad (in module pwkit.environments.casa.util)

 	polarization (pwkit.environments.casa.dftphotom.Config attribute)

 	PolynomialModel (class in pwkit.lsqmdl)

 	pop_option() (in module pwkit.cli)

 	populate() (pwkit.cli.multitool.DelegatingCommand method)

 	pos_epoch (pwkit.astutil.AstrometryInfo attribute)

 	pos_u_maj (pwkit.astutil.AstrometryInfo attribute)

 	pos_u_min (pwkit.astutil.AstrometryInfo attribute)

 	pos_u_pa (pwkit.astutil.AstrometryInfo attribute)

 	PowerLawApecDemModel (class in pwkit.sherpa)

 	predict() (pwkit.astutil.AstrometryInfo method)

 	predict_without_uncertainties() (pwkit.astutil.AstrometryInfo method)

 	prep_params() (pwkit.lsqmdl.MatMultComponent method)

 	(pwkit.lsqmdl.ModelComponent method)

 	(pwkit.lsqmdl.ScaleComponent method)

 	(pwkit.lsqmdl.SeriesComponent method)

 	prepend_environ_path() (in module pwkit.environments)

 	prepend_path() (in module pwkit.environments)

 	print_prediction() (pwkit.astutil.AstrometryInfo method)

 	print_soln() (pwkit.lsqmdl.ModelBase method)

 	print_tracebacks (class in pwkit.cli)

 	printexc (pwkit.kwargv.KeywordInfo attribute)

 	
 	Problem (class in pwkit.lmmin)

 	proc (pwkit.slurp.Slurper attribute)

 	Progress (class in pwkit.environments.casa.spwglue)

 	promo_dec (pwkit.astutil.AstrometryInfo attribute)

 	promo_ra (pwkit.astutil.AstrometryInfo attribute)

 	promo_u_maj (pwkit.astutil.AstrometryInfo attribute)

 	promo_u_min (pwkit.astutil.AstrometryInfo attribute)

 	promo_u_pa (pwkit.astutil.AstrometryInfo attribute)

 	propagate_signals (pwkit.slurp.Slurper attribute)

 	puncerts (pwkit.lsqmdl.ModelBase attribute)

 	pwkit (module)

 	pwkit.astimage (module)

 	pwkit.astutil (module)

 	pwkit.bblocks (module)

 	pwkit.cgs (module)

 	pwkit.cli (module)

 	pwkit.cli.astrotool (module)

 	pwkit.cli.imtool (module)

 	pwkit.cli.latexdriver (module)

 	pwkit.cli.multitool (module)

 	pwkit.cli.wrapout (module)

 	pwkit.colormaps (module)

 	pwkit.contours (module)

 	pwkit.data_gui_helpers (module)

 	pwkit.dulk_models (module)

 	pwkit.ellipses (module)

 	pwkit.environments (module)

 	pwkit.environments.casa (module)

 	pwkit.environments.casa.dftdynspec (module)

 	pwkit.environments.casa.dftphotom (module)

 	pwkit.environments.casa.scripting (module)

 	pwkit.environments.casa.spwglue (module)

 	pwkit.environments.casa.tasks (module)

 	pwkit.environments.casa.util (module)

 	pwkit.environments.ciao (module)

 	pwkit.environments.heasoft (module)

 	pwkit.environments.sas (module)

 	pwkit.environments.sas.data (module)

 	pwkit.fk10 (module)

 	pwkit.immodel (module)

 	pwkit.inifile (module)

 	pwkit.io (module)

 	pwkit.kbn_conf (module)

 	pwkit.kwargv (module)

 	pwkit.latex (module)

 	pwkit.lmmin (module)

 	pwkit.lsqmdl (module)

 	pwkit.method_decorator (module)

 	pwkit.msmt (module)

 	pwkit.numutil (module)

 	pwkit.parallel (module)

 	pwkit.pdm (module)

 	pwkit.phoenix (module)

 	pwkit.radio_cal_models (module)

 	pwkit.sherpa (module)

 	pwkit.simpleenum (module)

 	pwkit.slurp (module)

 	pwkit.synphot (module)

 	pwkit.tabfile (module)

 	pwkit.tinifile (module)

 	pwkit.ucd_physics (module)

 	pwkit.unicode_to_latex (module)

 	PyrapImage (class in pwkit.astimage)

R

 	
 	ra (pwkit.astutil.AstrometryInfo attribute)

 	rchisq (pwkit.lsqmdl.ModelBase attribute)

 	read() (in module pwkit.tabfile)

 	read_astropy_ascii() (pwkit.io.Path method)

 	read_fits() (pwkit.io.Path method)

 	read_fits_bintable() (pwkit.io.Path method)

 	read_hdf() (pwkit.io.Path method)

 	read_inifile() (pwkit.io.Path method)

 	read_json() (pwkit.io.Path method)

 	read_lines() (pwkit.io.Path method)

 	read_numpy() (pwkit.io.Path method)

 	read_numpy_text() (pwkit.io.Path method)

 	read_pandas() (pwkit.io.Path method)

 	read_pickle() (pwkit.io.Path method)

 	read_pickles() (pwkit.io.Path method)

 	read_stream() (in module pwkit.inifile)

 	read_tabfile() (pwkit.io.Path method)

 	read_text() (pwkit.io.Path method)

 	read_toml() (pwkit.io.Path method)

 	read_yaml() (pwkit.io.Path method)

 	readlink() (pwkit.io.Path method)

 	reals (pwkit.environments.casa.dftdynspec.Loader attribute)

 	Redirection (in module pwkit.slurp)

 	reduce_data_frame() (in module pwkit.numutil)

 	reduce_data_frame_evenly_with_gaps() (in module pwkit.numutil)

 	
 	Referencer (class in pwkit.latex)

 	RegionData (class in pwkit.environments.sas.data)

 	register() (pwkit.cli.multitool.DelegatingCommand method)

 	register_bpass() (pwkit.synphot.Registry method)

 	register_halfmaxes() (pwkit.synphot.Registry method)

 	register_pivot_wavelength() (pwkit.synphot.Registry method)

 	Registry (class in pwkit.synphot)

 	registry (pwkit.synphot.Bandpass attribute)

 	relative_to() (pwkit.io.Path method)

 	rellink() (in module pwkit.io)

 	rellink_to() (pwkit.io.Path method)

 	rename() (pwkit.io.Path method)

 	repeatable (pwkit.kwargv.KeywordInfo attribute)

 	rephase (pwkit.environments.casa.dftphotom.Config attribute)

 	repval() (in module pwkit.msmt)

 	(pwkit.msmt.Textual method)

 	repvals() (pwkit.msmt.Uval method)

 	required (pwkit.kwargv.KeywordInfo attribute)

 	reraise_context() (in module pwkit)

 	resids (pwkit.lsqmdl.ModelBase attribute)

 	resolve() (pwkit.io.Path method)

 	rglob() (pwkit.io.Path method)

 	rmdir() (pwkit.io.Path method)

 	rms() (in module pwkit.numutil)

 	rmtree() (pwkit.io.Path method)

S

 	
 	sample_double_norm() (in module pwkit.msmt)

 	sample_gamma() (in module pwkit.msmt)

 	sanitize_unicode() (in module pwkit.environments.casa.util)

 	scale (pwkit.kwargv.KeywordInfo attribute)

 	ScaleComponent (class in pwkit.lsqmdl)

 	ScaleModel (class in pwkit.lsqmdl)

 	scan (pwkit.environments.casa.dftphotom.Config attribute)

 	scandir() (pwkit.io.Path method)

 	scanintent (pwkit.environments.casa.dftphotom.Config attribute)

 	sep (pwkit.kwargv.KeywordInfo attribute)

 	serial_ppmap() (in module pwkit.parallel)

 	SerialHelper (class in pwkit.parallel)

 	SeriesComponent (class in pwkit.lsqmdl)

 	set() (pwkit.Holder method)

 	set_bfield() (pwkit.fk10.Calculator method)

 	set_bfield_for_s0() (pwkit.fk10.Calculator method)

 	set_data() (pwkit.lsqmdl.ModelBase method)

 	set_edist_powerlaw() (pwkit.fk10.Calculator method)

 	set_edist_powerlaw_gamma() (pwkit.fk10.Calculator method)

 	set_freqs() (pwkit.fk10.Calculator method)

 	set_func() (pwkit.lsqmdl.Model method)

 	set_hybrid_parameters() (pwkit.fk10.Calculator method)

 	set_ignore_q_terms() (pwkit.fk10.Calculator method)

 	set_obs_angle() (pwkit.fk10.Calculator method)

 	set_one() (pwkit.Holder method)

 	set_one_freq() (pwkit.fk10.Calculator method)

 	set_padist_gaussian_loss_cone() (pwkit.fk10.Calculator method)

 	set_padist_isotropic() (pwkit.fk10.Calculator method)

 	set_simple_func() (pwkit.lsqmdl.Model method)

 	set_thermal_background() (pwkit.fk10.Calculator method)

 	
 	set_trapezoidal_integration() (pwkit.fk10.Calculator method)

 	setjy() (in module pwkit.environments.casa.tasks)

 	SetjyConfig (class in pwkit.environments.casa.tasks)

 	shape (pwkit.astimage.AstroImage attribute)

 	show_corr() (pwkit.lsqmdl.ModelBase method)

 	show_cov() (pwkit.lsqmdl.ModelBase method)

 	show_usage() (in module pwkit.cli)

 	sigmascale() (in module pwkit.ellipses)

 	SimpleImage (class in pwkit.astimage)

 	slice_around_gaps() (in module pwkit.numutil)

 	slice_evenly_with_gaps() (in module pwkit.numutil)

 	Slurper (class in pwkit.slurp)

 	Solution (class in pwkit.lmmin)

 	solve() (pwkit.lsqmdl.Model method)

 	sphbear() (in module pwkit.astutil)

 	sphdist() (in module pwkit.astutil)

 	sphofs() (in module pwkit.astutil)

 	split() (in module pwkit.environments.casa.tasks)

 	SplitConfig (class in pwkit.environments.casa.tasks)

 	spw (pwkit.environments.casa.dftphotom.Config attribute)

 	stat() (pwkit.io.Path method)

 	stderr (pwkit.slurp.Slurper attribute)

 	stdin (pwkit.slurp.Slurper attribute)

 	stdout (pwkit.slurp.Slurper attribute)

 	stem (pwkit.io.Path attribute)

 	Stretcher (class in pwkit.data_gui_helpers)

 	subimage() (pwkit.astimage.AstroImage method)

 	suffix (pwkit.io.Path attribute)

 	suffixes (pwkit.io.Path attribute)

 	symlink_to() (pwkit.io.Path method)

 	synphot() (pwkit.synphot.Bandpass method)

T

 	
 	TableBuilder (class in pwkit.latex)

 	taql (pwkit.environments.casa.dftphotom.Config attribute)

 	tauc_from_mass() (in module pwkit.ucd_physics)

 	telescope (pwkit.synphot.Bandpass attribute)

 	telescopes() (pwkit.synphot.Registry method)

 	text_pieces() (pwkit.msmt.Uval method)

 	Textual (class in pwkit.msmt)

 	thetas (pwkit.pdm.PDMResult attribute)

 	time (pwkit.environments.casa.dftphotom.Config attribute)

 	timeout (pwkit.slurp.Slurper attribute)

 	
 	to_dict() (pwkit.Holder method)

 	to_pretty() (pwkit.Holder method)

 	tools (in module pwkit.environments.casa.util)

 	touch() (pwkit.io.Path method)

 	try_open() (in module pwkit.io)

 	(pwkit.io.Path method)

 	try_unlink() (pwkit.io.Path method)

 	tsysplot() (in module pwkit.environments.casa.tasks)

 	TsysplotConfig (class in pwkit.environments.casa.tasks)

 	tt_bblock() (in module pwkit.bblocks)

U

 	
 	u_imags (pwkit.environments.casa.dftdynspec.Loader attribute)

 	u_parallax (pwkit.astutil.AstrometryInfo attribute)

 	u_reals (pwkit.environments.casa.dftdynspec.Loader attribute)

 	u_vradial (pwkit.astutil.AstrometryInfo attribute)

 	uiname (pwkit.kwargv.KeywordInfo attribute)

 	uncert (pwkit.lsqmdl.Parameter attribute)

 	UncertFormatter (class in pwkit.latex)

 	unicode_stdio() (in module pwkit.cli)

 	unicode_to_str() (in module pwkit)

 	unit_tophat_ee() (in module pwkit.numutil)

 	unit_tophat_ei() (in module pwkit.numutil)

 	unit_tophat_ie() (in module pwkit.numutil)

 	unit_tophat_ii() (in module pwkit.numutil)

 	
 	units (pwkit.astimage.AstroImage attribute)

 	unlink() (pwkit.io.Path method)

 	UnsupportedError

 	unwrap() (in module pwkit.msmt)

 	UQUANT_UNCERT (in module pwkit.msmt)

 	UsageError

 	usmooth() (in module pwkit.numutil)

 	Uval (class in pwkit.msmt)

 	uval (pwkit.lsqmdl.Parameter attribute)

 	uval_dtype (in module pwkit.msmt)

 	uvdist (pwkit.environments.casa.dftphotom.Config attribute)

 	uvsub() (in module pwkit.environments.casa.tasks)

 	UvsubConfig (class in pwkit.environments.casa.tasks)

V

 	
 	VacuousContextManager (class in pwkit.parallel)

 	value (pwkit.lsqmdl.Parameter attribute)

 	verify() (pwkit.astutil.AstrometryInfo method)

 	
 	vis (pwkit.environments.casa.dftphotom.Config attribute)

 	vizread() (in module pwkit.tabfile)

 	vradial (pwkit.astutil.AstrometryInfo attribute)

W

 	
 	weighted_mean() (in module pwkit.numutil)

 	weighted_mean_df() (in module pwkit.numutil)

 	weighted_variance() (in module pwkit.numutil)

 	WideHeader (class in pwkit.latex)

 	with_name() (pwkit.io.Path method)

 	with_suffix() (pwkit.io.Path method)

 	words() (in module pwkit.io)

 	
 	write() (in module pwkit.inifile)

 	(in module pwkit.tabfile)

 	write_pickle() (pwkit.io.Path method)

 	write_pickles() (pwkit.io.Path method)

 	write_stream() (in module pwkit.inifile)

 	(in module pwkit.tinifile)

 	write_yaml() (pwkit.io.Path method)

 	wrong_usage() (in module pwkit.cli)

X

 	
 	xyphplot() (in module pwkit.environments.casa.tasks)

 	
 	XyphplotConfig (class in pwkit.environments.casa.tasks)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 pwkit

 		
 About the Software

 		
 Installation

 		
 Citation

 		
 Authors

 		
 Copyright and License

 		
 Foundations

 		
 Core utilities (pwkit)

 		
 The Holder namespace object

 		
 Utilities for exceptions

 		
 Abstractions between Python versions 2 and 3

 		
 Convenient file input and output (pwkit.io)

 		
 The Path object

 		
 Functions helping with Unicode safety

 		
 Other functions in pwkit.io

 		
 Numerical utilities (pwkit.numutil)

 		
 Making functions that auto-broadcast their arguments

 		
 Convenience functions for statistics

 		
 Convenience functions for pandas.DataFrame objects

 		
 Parallelized versions of simple math algorithms

 		
 Tophat and step functions

 		
 Framework for easy parallelized processing (pwkit.parallel)

 		
 Main Interface

 		
 Implementation Details

 		
 Quick enumerations of constant values (pwkit.simpleenum)

 		
 Scientific Algorithms

 		
 Basic astronomical calculations (pwkit.astutil)

 		
 Useful Constants

 		
 Sexagesimal Notation

 		
 Working with Angles

 		
 Simple Operations on 2D Gaussians

 		
 Basic Astrometry

 		
 Miscellaneous Astronomical Computations

 		
 File-format-agnostic loading of astronomical images (pwkit.astimage)

 		
 The Bayesian Blocks algorithm (pwkit.bblocks)

 		
 Constants in CGS units (pwkit.cgs)

 		
 Simple synchrotron radiation emission coefficients (pwkit.dulk_models)

 		
 Free-free emission

 		
 Gyrosynchrotron emission

 		
 Relativistic synchrotron emission

 		
 Helpers

 		
 Representations of and computations with ellipses (pwkit.ellipses)

 		
 Run the Fleischman & Kuznetsov (2010) synchrotron code (pwkit.fk10)

 		
 Installing the code

 		
 Modeling sources in images (pwkit.immodel)

 		
 Bayesian confidence intervals for count rates (pwkit.kbn_conf)

 		
 Nonlinear least-squares minimization with Levenberg-Marquardt (pwkit.lmmin)

 		
 Fitting generic models with least-squares minimization (pwkit.lsqmdl)

 		
 Generic Nonlinear Modeling

 		
 One-dimensional Polynomial Modeling

 		
 Modeling of a Single Scale Factor

 		
 Modeling With Pluggable Components

 		
 Math with uncertain and censored measurements (pwkit.msmt)

 		
 Period-finding with Phase Dispersion Minimization (pwkit.pdm)

 		
 Loading the outputs of PHOENIX atmospheric models (pwkit.phoenix)

 		
 Flux density models of radio calibrators (pwkit.radio_cal_models)

 		
 Helpers for X-ray spectral modeling with the Sherpa packge (pwkit.sherpa)

 		
 Additional Spectral Models

 		
 Tools for Plotting with Sherpa Data Objects

 		
 Data Structure Utilities

 		
 Synthetic photometry (pwkit.synphot)

 		
 Example

 		
 Conventions

 		
 References

 		
 The Registry class

 		
 The Bandpass class

 		
 Simple, careful conversions

 		
 Exceptions

 		
 Scaling relations for physical properties of ultra-cool dwarfs (pwkit.ucd_physics)

 		
 Command-line tools

 		
 Quick astronomical calculations (astrotool)

 		
 Quick operations on astronomical images (pwkit.cli.imtool)

 		
 Single-command compilation of LaTeX documents (latexdriver)

 		
 Wrap the output of a sub-program with extra information (wrapout)

 		
 Data Visualization

 		
 Mapping arbitrary data to color scales (pwkit.colormaps)

 		
 Tracing contours (pwkit.contours)

 		
 Utilities for data visualization (pwkit.data_gui_helpers)

 		
 Easy visualization of matrices with GTK+ version 2 (pwkit.ndshow_gtk2)

 		
 Easy visualization of matrices with GTK+ version 3 (pwkit.ndshow_gtk3)

 		
 Data input and output

 		
 Streaming output from other programs (pwkit.slurp)

 		
 Slurper reference

 		
 A simple “ini” file format (pwkit.inifile)

 		
 Outputting data in LaTeX format (pwkit.latex)

 		
 Classes

 		
 Functions

 		
 Helpers for TableBuilder

 		
 Reading and writing data tables with types and uncertainties (pwkit.tabfile)

 		
 An “ini” file format with typed, uncertain data (pwkit.tinifile)

 		
 Converting Unicode to LaTeX notation (pwkit.unicode_to_latex)

 		
 External Software Environments

 		
 CASA (pwkit.environments.casa)

 		
 Outline of functionality

 		
 More detailed documentation

 		
 Using CASA in the pwkit.environments framework

 		
 CASA installation notes

 		
 HEASoft (pwkit.environments.heasoft)

 		
 Using HEASoft in the pwkit.environments framework

 		
 HEAsoft installation notes

 		
 SAS (pwkit.environments.sas)

 		
 Unpacking data sets

 		
 SAS installation notes

 		
 ODF data format notes

 		
 More detailed documentation

 		
 CIAO (pwkit.environments.ciao)

 		
 Unpacking data sets

 		
 CIAO installation notes

 		
 Tools for writing command-line programs

 		
 Utilities for command-line programs (pwkit.cli)

 		
 Parsing keyword-style program arguments (pwkit.kwargv)

 		
 Keyword Specification Format

 		
 Command-line programs with sub-commands (pwkit.cli.multitool)

 		
 Behind-the-scenes infrastructure

 		
 Interfacing with other software environments (pwkit.environments)

 		
 Helper for decorators on class methods (pwkit.method_decorator)

