
pwkit
Release 1.0.0

Jun 18, 2023

Contents

1 About the Software 3
1.1 Installation . 3
1.2 Citation . 3
1.3 Authors . 4
1.4 Copyright and License . 4

2 Foundations 5
2.1 Core utilities (pwkit) . 5
2.2 Convenient file input and output (pwkit.io) . 8
2.3 Numerical utilities (pwkit.numutil) . 21
2.4 Framework for easy parallelized processing (pwkit.parallel) 28
2.5 Quick enumerations of constant values (pwkit.simpleenum) 32

3 Scientific Algorithms 35
3.1 Basic astronomical calculations (pwkit.astutil) . 35
3.2 File-format-agnostic loading of astronomical images (pwkit.astimage) 46
3.3 The Bayesian Blocks algorithm (pwkit.bblocks) . 47
3.4 Constants in CGS units (pwkit.cgs) . 49
3.5 Simple synchrotron radiation emission coefficients (pwkit.dulk_models) 49
3.6 Representations of and computations with ellipses (pwkit.ellipses) 53
3.7 Run the Fleischman & Kuznetsov (2010) synchrotron code (pwkit.fk10) 57
3.8 Modeling sources in images (pwkit.immodel) . 62
3.9 Bayesian confidence intervals for count rates (pwkit.kbn_conf) 62
3.10 Nonlinear least-squares minimization with Levenberg-Marquardt (pwkit.lmmin) 62
3.11 Fitting generic models with least-squares minimization (pwkit.lsqmdl) 65
3.12 Math with uncertain and censored measurements (pwkit.msmt) 71
3.13 Period-finding with Phase Dispersion Minimization (pwkit.pdm) 74
3.14 Loading the outputs of PHOENIX atmospheric models (pwkit.phoenix) 75
3.15 Flux density models of radio calibrators (pwkit.radio_cal_models) 76
3.16 Helpers for X-ray spectral modeling with the Sherpa packge (pwkit.sherpa) 77
3.17 Synthetic photometry (pwkit.synphot) . 81
3.18 Scaling relations for physical properties of ultra-cool dwarfs (pwkit.ucd_physics) 86

4 Command-line tools 89
4.1 Quick astronomical calculations (astrotool) . 89
4.2 Quick operations on astronomical images (pwkit.cli.imtool) 89
4.3 Single-command compilation of LaTeX documents (latexdriver) 89

i

4.4 Wrap the output of a sub-program with extra information (wrapout) 89

5 Data Visualization 91
5.1 Mapping arbitrary data to color scales (pwkit.colormaps) . 91
5.2 Tracing contours (pwkit.contours) . 92
5.3 Utilities for data visualization (pwkit.data_gui_helpers) 93
5.4 Easy visualization of matrices with GTK+ version 2 (pwkit.ndshow_gtk2) 93
5.5 Easy visualization of matrices with GTK+ version 3 (pwkit.ndshow_gtk3) 93

6 Data input and output 95
6.1 Streaming output from other programs (pwkit.slurp) . 95
6.2 A simple “ini” file format (pwkit.inifile) . 97
6.3 Outputting data in LaTeX format (pwkit.latex) . 98
6.4 Reading and writing data tables with types and uncertainties (pwkit.tabfile) 102
6.5 An “ini” file format with typed, uncertain data (pwkit.tinifile) 103
6.6 Converting Unicode to LaTeX notation (pwkit.unicode_to_latex) 104

7 External Software Environments 105
7.1 CASA (pwkit.environments.casa) . 105
7.2 HEASoft (pwkit.environments.heasoft) . 136
7.3 SAS (pwkit.environments.sas) . 137
7.4 CIAO (pwkit.environments.ciao) . 139

8 Tools for writing command-line programs 141
8.1 Utilities for command-line programs (pwkit.cli) . 141
8.2 Parsing keyword-style program arguments (pwkit.kwargv) . 144
8.3 Command-line programs with sub-commands (pwkit.cli.multitool) 147

9 Behind-the-scenes infrastructure 151
9.1 Interfacing with other software environments (pwkit.environments) 151
9.2 Helper for decorators on class methods (pwkit.method_decorator) 152

10 Indices and tables 153

Python Module Index 155

Index 157

ii

pwkit, Release 1.0.0

This documentation has a lot of stubs.

Contents 1

pwkit, Release 1.0.0

2 Contents

CHAPTER 1

About the Software

pwkit is a collection of Peter Williams’ miscellaneous Python tools. I’m packaging them so that other people can
install them off of PyPI or Conda and run my code without having to go to too much work. That’s the hope, at least.

1.1 Installation

The most recent stable version of pwkit is available on the Python package index, so you should be able to install this
package simply by running pip install pwkit. The package is also available in the conda package manager
by installing it from anaconda.org. If you are using packages from the conda-forge project, install with conda
install -c pkgw-forge pwkit. Otherwise, use conda install -c pkgw pwkit.

If you want to download the source code and install pwkitmanually, the package uses the standard Python setuptools,
so running python setup.py install will do the trick.

Some pwkit functionality requires additional Python modules such as scipy; these issues should be very obvious as
they manifest as ImportErrors triggered for the relevant modules. Bare minimum functionality requires:

• numpy >= 1.6

• six >= 1.9

• on Python 2.x only, pathlib >= 1.0

If you install pwkit through standard means, these modules should be automatically installed too if they weren’t
already available.

1.2 Citation

If you use pwkit in academic work, you should identify that you have done so and specify the version used. While
pwkit does not (yet?) have an accompanying formal publication, in journals like ApJ you can “cite” the code directly
via its record in the NASA Astrophysics Data System, which has identifier 2017ascl.soft04001W. This corresponds
to record ascl:1704.001 in in the Astrophysics Source Code Library. By clicking on this link you can get the ADS-
recommended BibTeX record for the reference.

3

https://pypi.python.org/pypi/pwkit/
http://conda.pydata.org/docs/
https://anaconda.org/pkgw/pwkit
http://conda-forge.github.io/
https://pypi.python.org/pypi/setuptools
http://www.scipy.org/
http://www.numpy.org/
https://pythonhosted.org/six/
https://pypi.python.org/pypi/pathlib/
http://iopscience.iop.org/journal/0004-637X
https://ui.adsabs.harvard.edu/#abs/2017ascl.soft04001W/abstract
https://ui.adsabs.harvard.edu/
https://ui.adsabs.harvard.edu/#abs/2017ascl.soft04001W/abstract
http://ascl.net/1704.001
http://ascl.net/
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2017ascl.soft04001W&data_type=BIBTEX

pwkit, Release 1.0.0

If you are using aastex version 6 or higher, the appropriate code to include after your Acknowledgments section would
be:

\software{..., pwkit \citep{2017ascl.soft04001W}, ...}

1.3 Authors

pwkit is authored by Peter K. G. Williams and collaborators. Despite this package being named after me, contribu-
tions are welcome and will be given full credit. I just don’t want to have to make up a decent name for this package
right now.

Contributions have come from (alphabetically by surname):

• Maïca Clavel

• Elisabeth Newton

• Denis Ryzhkov (I copied method_decorator)

1.4 Copyright and License

The pwkit package is copyright Peter K. G. Williams and collaborators and licensed under the MIT license, which
is reproduced in the file LICENSE in the source tree.

4 Chapter 1. About the Software

http://journals.aas.org/authors/aastex.html
https://github.com/denis-ryzhkov/method_decorator/
http://opensource.org/licenses/MIT

CHAPTER 2

Foundations

This documentation has a lot of stubs.

2.1 Core utilities (pwkit)

A toolkit for science and astronomy in Python.

The toplevel pwkit module includes a few basic abstractions that show up throughout the rest of the codebase. These
include:

• The Holder namespace object

• Utilities for exceptions

• Abstractions between Python versions 2 and 3

2.1.1 The Holder namespace object

Holder is a “namespace object” that primarily exists so that you can fill it with named attributes however you
want. It’s essentially like a plain dict, but you can write the convenient form myholder.xcoord instead of
mydict['xcoord']. It has useful methods like set() and to_pretty() also.

class pwkit.Holder(_Holder__decorating=None, **kwargs)
Create a new Holder. Any keyword arguments will be assigned as properties on the object itself, for instance,
o = Holder(foo=1) yields an object such that o.foo is 1.

The __decorating keyword is used to implement the Holder decorator functionality, described below.

get(name[, defval]) Get an attribute on this Holder.
set(**kwargs) For each keyword argument, sets an attribute on this

Holder to its value.
set_one(name, value) Set a single attribute on this object.

Continued on next page

5

https://docs.python.org/3/library/stdtypes.html#dict

pwkit, Release 1.0.0

Table 1 – continued from previous page
has(name) Return whether the named attribute has been set on

this object.
copy() Return a shallow copy of this object.
to_dict() Return a copy of this object converted to a dict.
to_pretty([format]) Return a string with a prettified version of this ob-

ject’s contents.

Iterating over a Holder yields its contents in the form of a sequence of (name, value) tuples. The
stringification of a Holder returns its representation in a dict-like format. Holder objects implement
__contains__ so that boolean tests such as "myprop" in myholder act sensibly.

get(name, defval=None)
Get an attribute on this Holder.

Equivalent to getattr(self, name, defval).

set(**kwargs)
For each keyword argument, sets an attribute on this Holder to its value.

Equivalent to:

for key, value in kwargs.iteritems():
setattr(self, key, value)

Returns self.

set_one(name, value)
Set a single attribute on this object.

Equivalent to setattr(self, name, value). Returns self.

has(name)
Return whether the named attribute has been set on this object.

This can more naturally be expressed by writing name in self.

copy()
Return a shallow copy of this object.

to_dict()
Return a copy of this object converted to a dict.

to_pretty(format=’str’)
Return a string with a prettified version of this object’s contents.

The format is a multiline string where each line is of the form key = value. If the format argument is
equal to "str", each value is the stringification of the value; if it is "repr", it is its repr().

Calling str() on a Holder returns a slightly different pretty stringification that uses a textual represen-
tation similar to a Python dict literal.

@pwkit.Holder
The Holder class may also be used as a decorator on a class definition to transform its contents into a Holder
instance. Writing:

@Holder
class mydata ():

a = 1
b = 'hello'

6 Chapter 2. Foundations

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/stdtypes.html#dict

pwkit, Release 1.0.0

creates a Holder instance named mydata containing names a and b. This can be a convenient way to populate
one-off data structures.

2.1.2 Utilities for exceptions

class pwkit.PKError(fmt, *args)
A generic base class for exceptions.

All custom exceptions raised by pwkit modules should be subclasses of this class.

The constructor automatically applies old-fashioned printf-like (%-based) string formatting if more than one
argument is given:

PKError('my format string says %r, %d', myobj, 12345)
has text content equal to:
'my format string says %r, %d' % (myobj, 12345)

If only a single argument is given, the exception text is its stringification without applying printf-style for-
matting.

pwkit.reraise_context(fmt, *args)
Reraise an exception with its message modified to specify additional context.

This function tries to help provide context when a piece of code encounters an exception while trying to get
something done, and it wishes to propagate contextual information farther up the call stack. It only makes
sense in Python 2, which does not provide Python 3’s exception chaining functionality. Instead of that more
sophisticated infrastructure, this function just modifies the textual message associated with the exception being
raised.

If only a single argument is supplied, the exception text prepended with the stringification of that argument.
If multiple arguments are supplied, the first argument is treated as an old-fashioned printf-type (%-based)
format string, and the remaining arguments are the formatted values.

Example usage:

from pwkit import reraise_context
from pwkit.io import Path

filename = 'my-filename.txt'

try:
f = Path(filename).open('rt')
for line in f.readlines():
do stuff ...

except Exception as e:
reraise_context('while reading "%r"', filename)
The exception is reraised and so control leaves this function.

If an exception with text "bad value" were to be raised inside the try block in the above example, its text
would be modified to read "while reading "my-filename.txt": bad value".

2.1.3 Abstractions between Python versions 2 and 3

The toplevel pwkit module imports the following variables from the six package that helps with Python 2/3 com-
patibility:

• binary_type

2.1. Core utilities (pwkit) 7

https://www.python.org/dev/peps/pep-3134/

pwkit, Release 1.0.0

• text_type

pwkit.unicode_to_str(s)
A function for implementing the __str__ method of classes, the meaning of which differs between Python
versions 2 and 3. In all cases, you should implement __unicode__ on your classes. Setting the __str__
property of a class to unicode_to_str() will cause it to Do The Right Thing™, which means returning the
UTF-8 encoded version of its Unicode expression in Python 2, or returning the Unicode expression directly in
Python 3:

import pwkit

class MyClass (object):
def __unicode__ (self):

return u'my value'

__str__ = pwkit.unicode_to_str

2.2 Convenient file input and output (pwkit.io)

The pwkit package provides many tools to ease reading and writing data files. The most generic such tools are
located in this module. The most important tool is the Path class for object-oriented navigation of the filesystem.

The functionality in this module can be grouped into these categories:

• The Path object

• Functions helping with Unicode safety

• Other functions in pwkit.io (generally being superseded by Path)

2.2.1 The Path object

class pwkit.io.Path
This is an extended version of the pathlib.Path class. (pathlib is built into Python 3.x and is available
as a backport to Python 2.x.) It represents a path on the filesystem.

The methods and attributes on Path objects fall into several broad categories:

• Manipulating and dissecting paths

• Filesystem interrogation

• Filesystem modifications

• Data input and output

Constructors are:

Path(part, *more)
Returns a new path equivalent to os.path.join (part, *more), except the arguments may be
either strings or other Path instances.

classmethod cwd()
Returns a new path containing the absolute path of the current working directory.

classmethod create_tempfile(want=’handle’, resolution=’try_unlink’, suffix=”, **kwargs)
Returns a context manager managing the creation and destruction of a named temporary file. The operation
of this function is exactly like that of the bound method Path.make_tempfile(), except that instead

8 Chapter 2. Foundations

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#module-pathlib

pwkit, Release 1.0.0

of creating a temporary file with a name similar to an existing path, this function creates one with a name
selected using the standard OS-dependent methods for choosing names of temporary files.

The overwrite resolution is not allowed here since there is no original path to overwrite.

Note that by default the returned context manager returns a file-like object and not an actual Path instance;
use want="path" to get a Path.

Manipulating and dissecting paths

Child paths can be created by using the division operator, that is:

parent = Path ('directory')
child = parent / 'subdirectory'

Combining a relative path with an absolute path in this way will just yield the absolute path:

>>> foo = Path ('relative') / Path ('/a/absolute')
>>> print (foo)
<<< /a/absolute

Paths should be converted to text by calling str() or unicode() on them.

Instances of Path have the following attributes that help you create new paths or break them into their components:

anchor The concatenation of the drive and root, or ‘’.
drive The drive prefix (letter or UNC path), if any.
name The final path component, if any.
parent The logical parent of the path.
parents A sequence of this path’s logical parents.
parts An object providing sequence-like access to the compo-

nents in the filesystem path.
stem The final path component, minus its last suffix.
suffix The final component’s last suffix, if any.
suffixes A list of the final component’s suffixes, if any.

And they have the following related methods:

absolute() Return an absolute version of this path.
as_uri() Return the path as a ‘file’ URI.
expand([user, vars, glob, resolve]) Return a new Pathwith various expansions performed.
format(*args, **kwargs) Return a new path formed by calling str.format()

on the textualization of this path.
get_parent([mode]) Get the path of this path’s parent directory.
is_absolute() True if the path is absolute (has both a root and, if ap-

plicable, a drive).
joinpath(*args) Combine this path with one or several arguments, and

return a new path representing either a subpath (if all
arguments are relative paths) or a totally different path
(if one of the arguments is anchored).

make_relative(other) Return a new path that is the equivalent of this one rela-
tive to the path other.

Continued on next page

2.2. Convenient file input and output (pwkit.io) 9

https://docs.python.org/3/library/stdtypes.html#str.format

pwkit, Release 1.0.0

Table 3 – continued from previous page
relative_to(*other) Return the relative path to another path identified by the

passed arguments.
resolve([strict]) Make the path absolute, resolving all symlinks on the

way and also normalizing it (for example turning slashes
into backslashes under Windows).

with_name(name) Return a new path with the file name changed.
with_suffix(suffix) Return a new path with the file suffix changed.

Detailed descriptions of attributes

Path.anchor
The concatenation of drive and root.

Path.drive
The Windows or network drive of the path. The empty string on POSIX.

Path.name
The final path component. The name of /foo/ is "foo". The name of /foo/. is "foo" as well. The name
of /foo/.. is "..".

Path.parent
This path’s parent, in a textual sense: the parent of foo is ., but the parent of . is also .. The parent of /bar
is /; the parent of / is also /.

See also:

Path.get_parent()

Path.parents
An immutable, indexable sequence of this path’s parents. Here are some examples showing the semantics:

>>> list(Path("/foo/bar").parents)
<<< [Path("/foo"), Path("/")]
>>> list(Path("/foo/bar/").parents)
<<< [Path("/foo"), Path("/")]
>>> list(Path("/foo/bar/.").parents)
<<< [Path("/foo"), Path("/")]
>>> list(Path("/foo/./bar/.").parents)
<<< [Path("/foo"), Path("/")]
>>> list(Path("wib/wob").parents)
<<< [Path("wib"), Path(".")]
>>> list(Path("wib/../wob/.").parents)
<<< [Path("wib/.."), Path("wib"), Path(".")]

See also:

Path.get_parent()

Path.parts
A tuple of the path components. Examples:

>>> Path('/a/b').parts
<<< ('/', 'a', 'b')
>>> Path('a/b').parts
<<< ('a', 'b')
>>> Path('/a/b/').parts
<<< ('/', 'a', 'b')

(continues on next page)

10 Chapter 2. Foundations

pwkit, Release 1.0.0

(continued from previous page)

>>> Path('a/b/.').parts
<<< ('a', 'b')
>>> Path('/a/../b/./c').parts
<<< ('/', 'a', '..', 'b', 'c')
>>> Path('.').parts
<<< ()
>>> Path('').parts
<<< ()

Path.stem
The name without its suffix. The stem of "foo.tar.gz" is "foo.tar". The stem of "noext" is
"noext". It is an invariant that name = stem + suffix.

Path.suffix
The suffix of the name, including the period. If there is no period, the empty string is returned:

>>> print (Path("foo.tar.gz").suffix)
<<< .gz
>>> print (Path("foo.dir/.").suffix)
<<< .dir
>>> print (repr (Path("noextension").suffix))
<<< ''

Path.suffixes
A list of all suffixes on name, including the periods. The suffixes of "foo.tar.gz" are [".tar", ".
gz"]. If name contains no periods, the empty list is returned.

Detailed descriptions of methods

Path.absolute()
Return an absolute version of the path. Unlike resolve(), does not normalize the path or resolve symlinks.

Path.as_uri()
Return the path stringified as a file:/// URI.

Path.expand(user=False, vars=False, glob=False, resolve=False)
Return a new Path with various expansions performed. All expansions are disabled by default but can be
enabled by passing in true values in the keyword arguments.

user [bool (default False)] Expand ~ and ~user home-directory constructs. If a username is unmatched or
$HOME is unset, no change is made. Calls os.path.expanduser().

vars [bool (default False)] Expand $var and ${var} environment variable constructs. Unknown variables
are not substituted. Calls os.path.expandvars().

glob [bool (default False)] Evaluate the path as a glob expression and use the matched path. If the glob does
not match anything, do not change anything. If the glob matches more than one path, raise an IOError.

resolve [bool (default False)] Call resolve() on the return value before returning it.

Path.format(*args, **kwargs)
Return a new path formed by calling str.format() on the textualization of this path.

Path.get_parent(mode=’naive’)
Get the path of this path’s parent directory.

Unlike the parent attribute, this function can correctly ascend into parent directories if self is "." or a
sequence of "..". The precise way in which it handles these kinds of paths, however, depends on the mode

2.2. Convenient file input and output (pwkit.io) 11

https://docs.python.org/3/library/os.path.html#os.path.expanduser
https://docs.python.org/3/library/os.path.html#os.path.expandvars
https://docs.python.org/3/library/glob.html#module-glob
https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/stdtypes.html#str.format

pwkit, Release 1.0.0

parameter:

"textual" Return the same thing as the parent attribute.

"resolved" As textual, but on the resolve()-d version of the path. This will always return the physical
parent directory in the filesystem. The path pointed to by self must exist for this call to succeed.

"naive" As textual, but the parent of "." is "..", and the parent of a sequence of ".." is the same
sequence with another "..". Note that this manipulation is still strictly textual, so results when
called on paths like "foo/../bar/../other" will likely not be what you want. Furthermore, p.
get_parent(mode="naive") never yields a path equal to p, so some kinds of loops will execute
infinitely.

Path.is_absolute()
Returns whether the path is absolute.

Path.joinpath(*args)
Combine this path with several new components. If one of the arguments is absolute, all previous components
are discarded.

Path.make_relative(other)
Return a new path that is the equivalent of this one relative to the path other. Unlike relative_to(), this
will not throw an error if self is not a sub-path of other; instead, it will use .. to build a relative path. This can
result in invalid relative paths if other contains a directory symbolic link.

If self is an absolute path, it is returned unmodified.

Path.relative_to(*other)
Return this path as made relative to another path identified by other. If this is not possible, raise ValueError.

Path.resolve()
Make this path absolute, resolving all symlinks and normalizing away ".." and "." components. The path
must exist for this function to work.

Path.with_name(name)
Return a new path with the file name changed.

Path.with_suffix(suffix)
Return a new path with the file suffix changed, or a new suffix added if there was none before. suffix must
start with a ".". The semantics of the suffix attribute are maintained, so:

>>> print (Path ('foo.tar.gz').with_suffix ('.new'))
<<< foo.tar.new

Filesystem interrogation

These methods probe the actual filesystem to test whether the given path, for example, is a directory; but they do not
modify the filesystem.

exists() Whether this path exists.
glob(pattern) Iterate over this subtree and yield all existing files (of

any kind, including directories) matching the given rel-
ative pattern.

is_block_device() Whether this path is a block device.
is_char_device() Whether this path is a character device.
is_dir() Whether this path is a directory.
is_fifo() Whether this path is a FIFO.

Continued on next page

12 Chapter 2. Foundations

https://docs.python.org/3/library/exceptions.html#ValueError

pwkit, Release 1.0.0

Table 4 – continued from previous page
is_file() Whether this path is a regular file (also True for sym-

links pointing to regular files).
is_socket() Whether this path is a socket.
is_symlink() Whether this path is a symbolic link.
iterdir() Iterate over the files in this directory.
match(path_pattern) Return True if this path matches the given pattern.
readlink() Assuming that this path is a symbolic link, read its con-

tents and return them as another Path object.
rglob(pattern) Recursively yield all existing files (of any kind, includ-

ing directories) matching the given relative pattern, any-
where in this subtree.

scandir() Iteratively scan this path, assuming it’s a directory.
stat() Return the result of the stat() system call on this path,

like os.stat() does.

Detailed descriptions

Path.exists()
Returns whether the path exists.

Path.glob(pattern)
Assuming that the path is a directory, iterate over its contents and return sub-paths matching the given shell-style
glob pattern.

Path.is_block_device()
Returns whether the path resolves to a block device file.

Path.is_char_device()
Returns whether the path resolves to a character device file.

Path.is_dir()
Returns whether the path resolves to a directory.

Path.is_fifo()
Returns whether the path resolves to a Unix FIFO.

Path.is_file()
Returns whether the path resolves to a regular file.

Path.is_socket()
Returns whether the path resolves to a Unix socket.

Path.is_symlink()
Returns whether the path resolves to a symbolic link.

Path.iterdir()
Iterate over the files in this directory. Does not yield any result for the special paths ‘.’ and ‘..’.

Assuming the path is a directory, generate a sequence of sub-paths corresponding to its contents.

Path.match(pattern)
Test whether this path matches the given shell glob pattern.

Path.readlink()
Assuming that this path is a symbolic link, read its contents and return them as another Path object. An “invalid
argument” OSError will be raised if this path does not point to a symbolic link.

2.2. Convenient file input and output (pwkit.io) 13

pwkit, Release 1.0.0

Path.rglob(pattern)
Recursively yield all files and directories matching the shell glob pattern pattern below this path.

Path.scandir()
Iteratively scan this path, assuming it’s a directory. This requires and uses the scandir module.

scandir is different than iterdir because it generates DirEntry items rather than Path instances. DirEntry ob-
jects have their properties filled from the directory info itself, so querying them avoids syscalls that would be
necessary with iterdir().

The generated values are scandir.DirEntry objects which have some information pre-filled. These objects
have methods inode(), is_dir(), is_file(), is_symlink(), and stat(). They have attributes
name (the basename of the entry) and path (its full path).

Path.stat()
Run os.stat() on the path and return the result.

Filesystem modifications

These functions actually modify the filesystem.

chmod(mode) Change the permissions of the path, like os.chmod().
copy_to(dest[, preserve]) Copy this path — as a file — to another dest.
ensure_dir([mode, parents]) Ensure that this path exists as a directory.
ensure_parent([mode, parents]) Ensure that this path’s parent directory exists.
make_tempfile([want, resolution, suffix]) Get a context manager that creates and cleans up a

uniquely-named temporary file with a name similar to
this path.

mkdir([mode, parents, exist_ok]) Create a new directory at this given path.
rellink_to(target[, force]) Make this path a symlink pointing to the given

target, generating the proper relative path using
make_relative().

rename(target) Rename this path to the given path.
rmdir() Remove this directory.
rmtree([errors]) Recursively delete this directory and its contents.
symlink_to(target[, target_is_directory]) Make this path a symlink pointing to the given path.
touch([mode, exist_ok]) Create this file with the given access mode, if it doesn’t

exist.
unlink() Remove this file or link.
try_unlink() Try to unlink this path.

Detailed descriptions

Path.chmod(mode)
Change the mode of the named path. Remember to use octal 0o755 notation!

Path.copy_to(dest, preserve=’mode’)
Copy this path — as a file — to another dest.

The preserve argument specifies which meta-properties of the file should be preserved:

none Only copy the file data.

mode Copy the data and the file mode (permissions, etc).

all Preserve as much as possible: mode, modification times, etc.

14 Chapter 2. Foundations

https://docs.python.org/3/library/os.html#os.stat

pwkit, Release 1.0.0

The destination dest may be a directory.

Returns the final destination path.

Path.ensure_dir(mode=511, parents=False)
Ensure that this path exists as a directory.

This function calls mkdir() on this path, but does not raise an exception if it already exists. It does raise an
exception if this path exists but is not a directory. If the directory is created, mode is used to set the permissions
of the resulting directory, with the important caveat that the current os.umask() is applied.

It returns a boolean indicating if the directory was actually created.

If parents is true, parent directories will be created in the same manner.

Path.ensure_parent(mode=511, parents=False)
Ensure that this path’s parent directory exists.

Returns a boolean whether the parent directory was created. Will attempt to create superior parent directories if
parents is true.

Path.make_tempfile(want=’handle’, resolution=’try_unlink’, suffix=”, **kwargs)
Get a context manager that creates and cleans up a uniquely-named temporary file with a name similar to this
path.

This function returns a context manager that creates a secure temporary file with a path similar to self. In
particular, if str(self) is something like foo/bar, the path of the temporary file will be something like
foo/bar.ame8_2.

The object returned by the context manager depends on the want argument:

"handle" An open file-like object is returned. This is the object returned by tempfile.
NamedTemporaryFile. Its name on the filesystem is accessible as a string as its name attribute, or
(a customization here) as a Path instance as its path attribute.

"path" The temporary file is created as in "handle", but is then immediately closed. A Path instance
pointing to the path of the temporary file is instead returned.

If an exception occurs inside the context manager block, the temporary file is left lying around. Otherwise, what
happens to it upon exit from the context manager depends on the resolution argument:

"try_unlink" Call try_unlink() on the temporary file — no exception is raised if the file did not exist.

"unlink" Call unlink() on the temporary file — an exception is raised if the file did not exist.

"keep" The temporary file is left lying around.

"overwrite" The temporary file is rename()-d to overwrite self.

For instance, when rewriting important files, it’s typical to write the new data to a temporary file, and only
rename the temporary file to the final destination at the end — that way, if a problem happens while writing the
new data, the original file is left unmodified; otherwise you’d be stuck with a partially-written version of the file.
This pattern can be accomplished with:

p = Path ('path/to/important/file')
with p.make_tempfile (resolution='overwrite', mode='wt') as h:

print ('important stuff goes here', file=h)

The suffix argument is appended to the temporary file name after the random portion. It defaults to the empty
string. If you want it to operate as a typical filename suffix, include a leading ".".

Other kwargs are passed to tempfile.NamedTemporaryFile.

2.2. Convenient file input and output (pwkit.io) 15

https://docs.python.org/3/library/os.html#os.umask

pwkit, Release 1.0.0

Path.mkdir(mode=0o777, parents=False)
Create a directory at this path location. Creates parent directories if parents is true. Raises OSError if the path
already exists, even if parents is true.

Path.rellink_to(target, force=False)
Make this path a symlink pointing to the given target, generating the proper relative path using
make_relative(). This gives different behavior than symlink_to(). For instance, Path ('a/b').
symlink_to ('c') results in a/b pointing to the path c, whereas rellink_to() results in it pointing
to ../c. This can result in broken relative paths if (continuing the example) a is a symbolic link to a directory.

If either target or self is absolute, the symlink will point at the absolute path to target. The intention is that if
you’re trying to link /foo/bar to bee/boo, it probably makes more sense for the link to point to /path/
to/.../bee/boo rather than ../../../../bee/boo.

If force is true, try_unlink() will be called on self before the link is made, forcing its re-creation.

Path.rename(target)
Rename this path to target.

Path.rmdir()
Delete this path, if it is an empty directory.

Path.rmtree(errors=’warn’)
Recursively delete this directory and its contents. The errors keyword specifies how errors are handled:

“warn” (the default) Print a warning to standard error.

“ignore” Ignore errors.

Path.symlink_to(target, target_is_directory=False)
Make this path a symlink pointing to the given target.

Path.touch(mode=0o666, exist_ok=True)
Create a file at this path with the given mode, if needed.

Path.unlink()
Unlink this file or symbolic link.

Path.try_unlink()
Try to unlink this path. If it doesn’t exist, no error is returned. Returns a boolean indicating whether the path
was really unlinked.

Data input and output

open([mode, buffering, encoding, errors, . . .]) Open the file pointed by this path and return a file object,
as the built-in open() function does.

try_open([null_if_noexist]) Call Path.open() on this path (passing kwargs) and
return the result.

as_hdf_store([mode]) Return the path as an opened pandas.HDFStore ob-
ject.

read_astropy_ascii(**kwargs) Open as an ASCII table, returning a astropy.
table.Table object.

read_fits(**kwargs) Open as a FITS file, returning a astropy.io.fits.
HDUList object.

Continued on next page

16 Chapter 2. Foundations

https://docs.python.org/3/library/exceptions.html#OSError

pwkit, Release 1.0.0

Table 6 – continued from previous page
read_fits_bintable([hdu, drop_nonscalar_ok]) Open as a FITS file, read in a bi-

nary table, and return it as a pandas.
DataFrame, converted with pkwit.numutil.
fits_recarray_to_data_frame().

read_hdf(key, **kwargs) Open as an HDF5 file using pandas and return the item
stored under the key key.

read_inifile([noexistok, typed]) Open assuming an “ini-file” format and return a gen-
erator yielding data records using either pwkit.
inifile.read_stream() (if typed is false) or
pwkit.tinifile.read_stream() (if it’s true).

read_json([mode]) Use the json module to read in this file as a JSON-
formatted data structure.

read_lines([mode, noexistok]) Generate a sequence of lines from the file pointed to by
this path, by opening as a regular file and iterating over
it.

read_numpy(**kwargs) Read this path into a numpy.ndarray using numpy.
load().

read_numpy_text([dfcols]) Read this path into a numpy.ndarray as a text file
using numpy.loadtxt().

read_pandas([format]) Read using pandas.
read_pickle() Open the file, unpickle one object from it using

pickle, and return it.
read_pickles() Generate a sequence of objects by opening the path and

unpickling items until EOF is reached.
read_tabfile(**kwargs) Read this path as a table of typed measurements via

pwkit.tabfile.read().
read_text([encoding, errors, newline]) Read this path as one large chunk of text.
read_toml([encoding, errors, newline]) Read this path as a TOML document.
read_yaml([encoding, errors, newline]) Read this path as a YAML document.
write_pickle(obj) Dump obj to this path using cPickle.
write_pickles(objs) objs must be iterable.
write_yaml(data[, encoding, errors, newline]) Read data to this path as a YAML document.

Detailed descriptions

Path.open(mode=’r’, buffering=-1, encoding=None, errors=None, newline=None)
Open the file pointed at by the path and return a file object. This delegates to the modern io.open()
function, not the global builtin open().

Path.try_open(null_if_noexist=False, **kwargs)
Call Path.open() on this path (passing kwargs) and return the result. If the file doesn’t exist, the behavior
depends on null_if_noexist. If it is false (the default), None is returned. Otherwise, os.devnull is opened
and returned.

Path.as_hdf_store(mode=’r’, **kwargs)
Return the path as an opened pandas.HDFStore object. Note that the HDFStore constructor uncondition-
ally prints messages to standard output when opening and closing files, so use of this function will pollute your
program’s standard output. The kwargs are forwarded to the HDFStore constructor.

Path.read_astropy_ascii(**kwargs)
Open as an ASCII table, returning a astropy.table.Table object. Keyword arguments are passed to
astropy.io.ascii.open(); valid ones likely include:

• names = <list> (column names)

2.2. Convenient file input and output (pwkit.io) 17

https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/io.html#io.open
https://docs.python.org/3/library/os.html#os.devnull

pwkit, Release 1.0.0

• format (‘basic’, ‘cds’, ‘csv’, ‘ipac’, . . .)

• guess = True (guess table format)

• delimiter (column delimiter)

• comment = <regex>

• header_start = <int> (line number of header, ignoring blank and comment lines)

• data_start = <int>

• data_end = <int>

• converters = <dict>

• include_names = <list> (names of columns to include)

• exclude_names = <list> (names of columns to exclude; applied after include)

• fill_values = <dict> (filler values)

Path.read_fits(**kwargs)
Open as a FITS file, returning a astropy.io.fits.HDUList object. Keyword arguments are passed to
astropy.io.fits.open(); valid ones likely include:

• mode = 'readonly' (or “update”, “append”, “denywrite”, “ostream”)

• memmap = None

• save_backup = False

• cache = True

• uint = False

• ignore_missing_end = False

• checksum = False

• disable_image_compression = False

• do_not_scale_image_data = False

• ignore_blank = False

• scale_back = False

Path.read_fits_bintable(hdu=1, drop_nonscalar_ok=True, **kwargs)
Open as a FITS file, read in a binary table, and return it as a pandas.DataFrame, converted with pkwit.
numutil.fits_recarray_to_data_frame(). The hdu argument specifies which HDU to read, with
its default 1 indicating the first FITS extension. The drop_nonscalar_ok argument specifies if non-scalar
table values (which are inexpressible in pandas.DataFrame`s) should be silently ignored
(``True`) or cause a ValueError to be raised (False). Other kwargs are passed to astropy.io.
fits.open(), (see Path.read_fits()) although the open mode is hardcoded to be "readonly".

Path.read_hdf(key, **kwargs)
Open as an HDF5 file using pandas and return the item stored under the key key. kwargs are passed to
pandas.read_hdf().

Path.read_inifile(noexistok=False, typed=False)
Open assuming an “ini-file” format and return a generator yielding data records using either pwkit.
inifile.read_stream() (if typed is false) or pwkit.tinifile.read_stream() (if it’s true). The
latter version is designed to work with numerical data using the pwkit.msmt subsystem. If noexistok is true,
a nonexistent file will result in no items being generated rather than an IOError being raised.

18 Chapter 2. Foundations

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#IOError

pwkit, Release 1.0.0

Path.read_json(mode=’rt’, **kwargs)
Use the json module to read in this file as a JSON-formatted data structure. Keyword arguments are passed to
json.load(). Returns the read-in data structure.

Path.read_lines(mode=’rt’, noexistok=False, **kwargs)
Generate a sequence of lines from the file pointed to by this path, by opening as a regular file and iterating over
it. The lines therefore contain their newline characters. If noexistok, a nonexistent file will result in an empty
sequence rather than an exception. kwargs are passed to Path.open().

Path.read_numpy(**kwargs)
Read this path into a numpy.ndarray using numpy.load(). kwargs are passed to numpy.load(); they
likely are:

mmap_mode [None, ‘r+’, ‘r’, ‘w+’, ‘c’] Load the array using memory-mapping

allow_pickle [bool = True] Whether Pickle-format data are allowed; potential security hazard.

fix_imports [bool = True] Try to fix Python 2->3 import renames when loading Pickle-format data.

encoding [‘ASCII’, ‘latin1’, ‘bytes’] The encoding to use when reading Python 2 strings in Pickle-format data.

Path.read_numpy_text(dfcols=None, **kwargs)
Read this path into a numpy.ndarray as a text file using numpy.loadtxt(). In normal conditions the
returned array is two-dimensional, with the first axis spanning the rows in the file and the second axis columns
(but see the unpack and dfcols keywords).

If dfcols is not None, the return value is a pandas.DataFrame constructed from the array. dfcols should
be an iterable of column names, one for each of the columns returned by the numpy.loadtxt() call. For
convenience, if dfcols is a single string, it will by turned into an iterable by a call to str.split().

The remaining kwargs are passed to numpy.loadtxt(); they likely are:

dtype [data type] The data type of the resulting array.

comments [str] If specific, a character indicating the start of a comment.

delimiter [str] The string that separates values. If unspecified, any span of whitespace works.

converters [dict] A dictionary mapping zero-based column number to a function that will turn the cell text into
a number.

skiprows [int (default=0)] Skip this many lines at the top of the file

usecols [sequence] Which columns keep, by number, starting at zero.

unpack [bool (default=False)] If true, the return value is transposed to be of shape (cols, rows).

ndmin [int (default=0)] The returned array will have at least this many dimensions; otherwise mono-
dimensional axes will be squeezed.

Path.read_pandas(format=’table’, **kwargs)
Read using pandas. The function pandas.read_FORMAT is called where FORMAT is set from the argument
format. kwargs are passed to this function. Supported formats likely include clipboard, csv, excel, fwf,
gbq, html, json, msgpack, pickle, sql, sql_query, sql_table, stata, table. Note that hdf
is not supported because it requires a non-keyword argument; see Path.read_hdf().

Path.read_pickle()
Open the file, unpickle one object from it using pickle, and return it.

Path.read_pickles()
Generate a sequence of objects by opening the path and unpickling items until EOF is reached.

2.2. Convenient file input and output (pwkit.io) 19

https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/json.html#json.load
https://docs.python.org/3/library/pickle.html#module-pickle

pwkit, Release 1.0.0

Path.read_tabfile(**kwargs)
Read this path as a table of typed measurements via pwkit.tabfile.read(). Returns a generator for a
sequence of pwkit.Holder objects, one for each row in the table, with attributes for each of the columns.

tabwidth [int (default=8)] The tab width to assume. Defaults to 8 and should not be changed unless absolutely
necessary.

mode [str (default=’rt’)] The file open mode, passed to io.open().

noexistok [bool (default=False)] If true, a nonexistent file will result in no items being generated, as opposed
to an IOError.

kwargs [keywords] Additional arguments are passed to io.open().

Path.read_text(encoding=None, errors=None, newline=None)
Read this path as one large chunk of text.

This function reads in the entire file as one big piece of text and returns it. The encoding, errors, and newline
keywords are passed to open().

This is not a good way to read files unless you know for sure that they are small.

Path.read_toml(encoding=None, errors=None, newline=None, **kwargs)
Read this path as a TOML document.

The TOML parsing is done with the pytoml module. The encoding, errors, and newline keywords are passed
to open(). The remaining kwargs are passed to toml.load().

Returns the decoded data structure.

Path.read_yaml(encoding=None, errors=None, newline=None, **kwargs)
Read this path as a YAML document.

The YAML parsing is done with the yaml module. The encoding, errors, and newline keywords are passed to
open(). The remaining kwargs are passed to yaml.load().

Returns the decoded data structure.

Path.write_pickle(obj)
Dump obj to this path using cPickle.

Path.write_pickles(objs)
objs must be iterable. Write each of its values to this path in sequence using cPickle.

Path.write_yaml(data, encoding=None, errors=None, newline=None, **kwargs)
Read data to this path as a YAML document.

The encoding, errors, and newline keywords are passed to open(). The remaining kwargs are passed to
yaml.dump().

2.2.2 Functions helping with Unicode safety

get_stdout_bytes() Get a reference to the standard output stream that ac-
cepts bytes, not unicode characters.

get_stderr_bytes() Get a reference to the standard error stream that accepts
bytes, not unicode characters.

pwkit.io.get_stdout_bytes()
Get a reference to the standard output stream that accepts bytes, not unicode characters.

Returns: a file-like object hooked up to the process’ standard output.

20 Chapter 2. Foundations

https://docs.python.org/3/library/io.html#io.open
https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/io.html#io.open
https://github.com/toml-lang/toml

pwkit, Release 1.0.0

Usually, you want to write text to a process’s standard output stream (“stdout”), so you want sys.stdout to
be a stream that accepts Unicode. The function pwkit.cli.unicode_stdio() sets this up in Python 2,
which has an imperfect hack to allow Unicode output to work most of the time. However, there are other times
when you really do want to write arbitrary binary data to stdout. Depending on whether you’re using Python 2
or Python 3, or whether pwkit.cli.unicode_stdio() has been called, the right way to get access to the
underlying byte-based stream is different. This function encapsulates these checks and works across all of these
cases.

pwkit.io.get_stderr_bytes()
Get a reference to the standard error stream that accepts bytes, not unicode characters.

Returns: a file-like object hooked up to the process’ standard error.

Usually, you want to write text to a process’s standard error stream (“stderr”), so you want sys.stderr to
be a stream that accepts Unicode. The function pwkit.cli.unicode_stdio() sets this up in Python 2,
which has an imperfect hack to allow Unicode output to work most of the time. However, there are other times
when you really do want to write arbitrary binary data to stderr. Depending on whether you’re using Python 2
or Python 3, or whether pwkit.cli.unicode_stdio() has been called, the right way to get access to the
underlying byte-based stream is different. This function encapsulates these checks and works across all of these
cases.

2.2.3 Other functions in pwkit.io

These are generally superseded by operations on Path.

pwkit.io.try_open(*args, **kwargs)
Placeholder.

pwkit.io.words(linegen)
Placeholder.

pwkit.io.pathwords(path, mode=’rt’, noexistok=False, **kwargs)
Placeholder.

pwkit.io.pathlines(path, mode=’rt’, noexistok=False, **kwargs)
Placeholder.

pwkit.io.make_path_func(*baseparts)
Placeholder.

pwkit.io.djoin(*args)
Placeholder.

pwkit.io.rellink(source, dest)
Placeholder.

pwkit.io.ensure_dir(path, parents=False)
Placeholder.

pwkit.io.ensure_symlink(src, dst)
Placeholder.

2.3 Numerical utilities (pwkit.numutil)

The numpy and scipy packages provide a whole host of routines, but there are still some that are missing. The
pwkit.numutil module provides several useful additions.

The functionality in this module can be grouped into these categories:

2.3. Numerical utilities (pwkit.numutil) 21

https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr

pwkit, Release 1.0.0

• Making functions that auto-broadcast their arguments

• Convenience functions for statistics

• Convenience functions for pandas.DataFrame objects

• Parallelized versions of simple math algorithms

• Tophat and step functions

2.3.1 Making functions that auto-broadcast their arguments

@pwkit.numutil.broadcastize(n_arr, ret_spec=0, force_float=True)
Wrap a function to automatically broadcast numpy.ndarray arguments.

It’s often desirable to write numerical utility functions in a way that’s compatible with vectorized processing.
It can be tedious to do this, however, since the function arguments need to turned into arrays and checked for
compatible shape, and scalar values need to be special cased.

The @broadcastize decorator takes care of these matters. The decorated function can be implemented in
vectorized form under the assumption that all array arguments have been broadcast to the same shape. The
broadcasting of inputs and (potentially) de-vectorizing of the return values are done automatically. For instance,
if you decorate a function foo(x,y)with @numutil.broadcastize(2), you can implement it assuming
that both x and y are numpy.ndarray objects that have at least one dimension and are both of the same shape.
If the function is called with only scalar arguments, x and y will have shape (1,) and the function’s return value
will be turned back into a scalar before reaching the caller.

The n_arr argument specifies the number of array arguments that the function takes. These are required to be at
the beginning of its argument list.

The ret_spec argument specifies the structure of the function’s return value.

• 0 indicates that the value has the same shape as the (broadcasted) vector arguments. If the arguments are
all scalar, the return value will be scalar too.

• 1 indicates that the value is an array of higher rank than the input arguments. For instance, if the input has
shape (3,), the output might have shape (4,4,3); in general, if the input has shape s, the output will
have shape t + s for some tuple t. If the arguments are all scalar, the output will have a shape of just t.
The numpy.asarray() function is called on such arguments, so (for instance) you can return a list of
arrays [a, b] and it will be converted into a numpy.ndarray.

• None indicates that the value is completely independ of the inputs. It is returned as-is.

• A tuple t indicates that the return value is also a tuple. The elements of the ret_spec tuple should contain
the values listed above, and each element of the return value will be handled accordingly.

The default ret_spec is 0, i.e. the return value is expected to be an array of the same shape as the argument(s).

If force_float is true (the default), the input arrays will be converted to floating-point types if necessary (with
numpy.asfarray()) before being passed to the function.

Example:

@numutil.broadcastize (2, ret_spec=(0, 1, None)):
def myfunction (x, y, extra_arg):

print ('a random non-vector argument is:', extra_arg)
z = x + y
z[np.where (y)] *= 2
higher_vector = [x, y, z]
return z, higher_vector, 'hello'

22 Chapter 2. Foundations

pwkit, Release 1.0.0

2.3.2 Convenience functions for statistics

rms(x) Return the square root of the mean of the squares of x.
weighted_mean(values, uncerts, **kwargs)
weighted_mean_df(df, **kwargs) The same as weighted_mean(), except the ar-

gument is expected to be a two-column pandas.
DataFrame whose first column gives the data values
and second column gives their uncertainties.

weighted_variance(x, weights) Return the variance of a weighted sample.

pwkit.numutil.rms(x)
Return the square root of the mean of the squares of x.

pwkit.numutil.weighted_mean(values, uncerts, **kwargs)

pwkit.numutil.weighted_mean_df(df, **kwargs)
The same as weighted_mean(), except the argument is expected to be a two-column pandas.
DataFrame whose first column gives the data values and second column gives their uncertainties. Returns
(weighted_mean, uncertainty_in_mean).

pwkit.numutil.weighted_variance(x, weights)
Return the variance of a weighted sample.

The weighted sample mean is calculated and subtracted off, so the returned variance is upweighted by n
/ (n - 1). If the sample mean is known to be zero, you should just compute np.average(x**2,
weights=weights).

2.3.3 Convenience functions for pandas.DataFrame objects

reduce_data_frame(df, chunk_slicers[, . . .]) “Reduce” a DataFrame by collapsing rows in grouped
chunks.

reduce_data_frame_evenly_with_gaps(df,
. . .)

“Reduce” a DataFrame by collapsing rows in grouped
chunks, grouping based on gaps in one of the columns.

slice_around_gaps(values, maxgap) Given an ordered array of values, generate a set of slices
that traverse all of the values.

slice_evenly_with_gaps(values, target_len,
. . .)

Given an ordered array of values, generate a set of slices
that traverse all of the values.

dfsmooth(window, df, ucol[, k]) Smooth a pandas.DataFrame according to a win-
dow, weighting based on uncertainties.

smooth_data_frame_with_gaps(window, df,
. . .)

Smooth a pandas.DataFrame according to a win-
dow, weighting based on uncertainties, and breaking the
smoothing process at gaps in a time axis.

fits_recarray_to_data_frame(recarray[,
. . .])

Convert a FITS data table, stored as a Numpy record
array, into a Pandas DataFrame object.

data_frame_to_astropy_table(dataframe) This is a backport of the Astropy method astropy.
table.table.Table.from_pandas().

usmooth(window, uncerts, *data, **kwargs) Smooth data series according to a window, weighting
based on uncertainties.

page_data_frame(df[, pager_argv]) Render a DataFrame as text and send it to a terminal
pager program (e.g.

2.3. Numerical utilities (pwkit.numutil) 23

pwkit, Release 1.0.0

pwkit.numutil.reduce_data_frame(df, chunk_slicers, avg_cols=(), uavg_cols=(), min-
max_cols=(), nchunk_colname=’nchunk’, uncert_prefix=’u’,
min_points_per_chunk=3)

“Reduce” a DataFrame by collapsing rows in grouped chunks. Returns another DataFrame with similar columns
but fewer rows.

Arguments:

df The input pandas.DataFrame.

chunk_slicers An iterable that returns values that are used to slice df with its pandas.DataFrame.iloc()
indexer. An example value might be the generator returned from slice_evenly_with_gaps().

avg_cols An iterable of names of columns that are to be reduced by taking the mean.

uavg_cols An iterable of names of columns that are to be reduced by taking a weighted mean.

minmax_cols An iterable of names of columns that are to be reduced by reporting minimum and maximum
values.

nchunk_colname The name of a column to create reporting the number of rows contributing to each chunk.

uncert_prefix The column name prefix for locating uncertainty estimates. By default, the uncertainty on the
column "temp" is given in the column "utemp".

min_points_per_chunk Require at least this many rows in each chunk. Smaller chunks are discarded.

Returns a new pandas.DataFrame.

pwkit.numutil.reduce_data_frame_evenly_with_gaps(df, valcol, target_len, maxgap,
**kwargs)

“Reduce” a DataFrame by collapsing rows in grouped chunks, grouping based on gaps in one of the columns.

This function combines reduce_data_frame() with slice_evenly_with_gaps().

pwkit.numutil.slice_around_gaps(values, maxgap)
Given an ordered array of values, generate a set of slices that traverse all of the values. Within each slice, no
gap between adjacent values is larger than maxgap. In other words, these slices break the array into chunks
separated by gaps of size larger than maxgap.

pwkit.numutil.slice_evenly_with_gaps(values, target_len, maxgap)
Given an ordered array of values, generate a set of slices that traverse all of the values. Each slice contains about
target_len items. However, no slice contains a gap larger than maxgap, so a slice may contain only a single
item (if it is surrounded on both sides by a large gap). If a non-gapped run of values does not divide evenly into
target_len, the algorithm errs on the side of making the slices contain more than target_len items, rather than
fewer. It also attempts to keep the slice size uniform within each non-gapped run.

pwkit.numutil.dfsmooth(window, df, ucol, k=None)
Smooth a pandas.DataFrame according to a window, weighting based on uncertainties.

Arguments are:

window The smoothing window.

df The pandas.DataFrame.

ucol The name of the column in df that contains the uncertainties to weight by.

k = None If specified, only every k-th point of the results will be kept. If k is None (the default), it is set to
window.size, i.e. correlated points will be discarded.

Returns: a smoothed data frame.

The returned data frame has a default integer index.

Example:

24 Chapter 2. Foundations

pwkit, Release 1.0.0

sdata = numutil.dfsmooth(np.hamming(7), data, 'u_temp')

pwkit.numutil.fits_recarray_to_data_frame(recarray, drop_nonscalar_ok=True)
Convert a FITS data table, stored as a Numpy record array, into a Pandas DataFrame object. By default, non-
scalar columns are discarded, but if drop_nonscalar_ok is False then a ValueError is raised. Column names
are lower-cased. Example:

from pwkit import io, numutil
hdu_list = io.Path('my-table.fits').read_fits()
assuming the first FITS extension is a binary table:
df = numutil.fits_recarray_to_data_frame(hdu_list[1].data)

FITS data are big-endian, whereas nowadays almost everything is little-endian. This seems to be an issue for
Pandas DataFrames, where df[['col1', 'col2']] triggers an assertion for me if the underlying data are
not native-byte-ordered. This function normalizes the read-in data to native endianness to avoid this.

See also pwkit.io.Path.read_fits_bintable().

pwkit.numutil.data_frame_to_astropy_table(dataframe)
This is a backport of the Astropy method astropy.table.table.Table.from_pandas(). It converts
a Pandas pandas.DataFrame object to an Astropy astropy.table.Table.

pwkit.numutil.usmooth(window, uncerts, *data, **kwargs)
Smooth data series according to a window, weighting based on uncertainties.

Arguments:

window The smoothing window.

uncerts An array of uncertainties used to weight the smoothing.

data One or more data series, of the same size as uncerts.

k = None If specified, only every k-th point of the results will be kept. If k is None (the default), it is set to
window.size, i.e. correlated points will be discarded.

Returns: (s_uncerts, s_data[0], s_data[1], ...), the smoothed uncertainties and data series.

Example:

u, x, y = numutil.usmooth(np.hamming(7), u, x, y)

pwkit.numutil.page_data_frame(df, pager_argv=[’less’], **kwargs)
Render a DataFrame as text and send it to a terminal pager program (e.g. less), so that one can browse a full
table conveniently.

df The DataFrame to view

pager_argv: default ['less'] A list of strings passed to subprocess.Popen that launches the pager
program

kwargs Additional keywords are passed to pandas.DataFrame.to_string().

Returns None. Execution blocks until the pager subprocess exits.

2.3.4 Parallelized versions of simple math algorithms

2.3. Numerical utilities (pwkit.numutil) 25

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/subprocess.html#subprocess.Popen

pwkit, Release 1.0.0

parallel_newton(func, x0[, fprime, . . .]) A parallelized version of scipy.optimize.
newton().

parallel_quad(func, a, b[, par_args, . . .]) A parallelized version of scipy.integrate.
quad().

pwkit.numutil.parallel_newton(func, x0, fprime=None, par_args=(), simple_args=(), tol=1.48e-
08, maxiter=50, parallel=True, **kwargs)

A parallelized version of scipy.optimize.newton().

Arguments:

func The function to search for zeros, called as f(x, [*par_args...], [*simple_args...]).

x0 The initial point for the zero search.

fprime (Optional) The first derivative of func, called the same way.

par_args Tuple of additional parallelized arguments.

simple_args Tuple of additional arguments passed identically to every invocation.

tol The allowable error of the zero value.

maxiter Maximum number of iterations.

parallel Controls parallelization; default uses all available cores. See pwkit.parallel.
make_parallel_helper().

kwargs Passed to scipy.optimize.newton().

Returns: an array of locations of zeros.

Finds zeros in parallel. The values x0, tol, maxiter, and the items of par_args should all be numeric, and may be
N-dimensional Numpy arrays. They are all broadcast to a common shape, and one zero-finding run is performed
for each element in the resulting array. The return value is an array of zero locations having the same shape as
the common broadcast of the parameters named above.

The simple_args are passed to each function identically for each integration. They do not need to be Pickle-able.

Example:

>>> parallel_newton(lambda x, a: x - 2 * a, 2,
par_args=(np.arange(6),))

<<< array([0., 2., 4., 6., 8., 10.])
>>> parallel_newton(lambda x: np.sin(x), np.arange(6))
<<< array([0.00000000e+00, 3.65526589e-26, 3.14159265e+00,

3.14159265e+00, 3.14159265e+00, 6.28318531e+00])

pwkit.numutil.parallel_quad(func, a, b, par_args=(), simple_args=(), parallel=True, **kwargs)
A parallelized version of scipy.integrate.quad().

Arguments are:

func The function to integrate, called as f(x, [*par_args...], [*simple_args...]).

a The lower limit(s) of integration.

b The upper limits(s) of integration.

par_args Tuple of additional parallelized arguments.

simple_args Tuple of additional arguments passed identically to every invocation.

26 Chapter 2. Foundations

pwkit, Release 1.0.0

parallel Controls parallelization; default uses all available cores. See pwkit.parallel.
make_parallel_helper().

kwargs Passed to scipy.integrate.quad(). Don’t set full_output to True.

Returns: integrals and errors; see below.

Computes many integrals in parallel. The values a, b, and the items of par_args should all be numeric, and
may be N-dimensional Numpy arrays. They are all broadcast to a common shape, and one integral is performed
for each element in the resulting array. If this common shape is (X,Y,Z), the return value has shape (2,X,Y,Z),
where the subarray [0,. . .] contains the computed integrals and the subarray [1,. . .] contains the absolute error
estimates. If a, b, and the items in par_args are all scalars, the return value has shape (2,).

The simple_args are passed to each integrand function identically for each integration. They do not need to be
Pickle-able.

Example:

>>> parallel_quad(lambda x, u, v, q: u * x + v,
0, # a
[3, 4], # b
(np.arange(6).reshape((3,2)), np.arange(3).reshape((3,1))), #

→˓par_args
('hello',),)

Computes six integrals and returns an array of shape (2,3,2). The functions that are evaluated are:

[[0*x + 0, 1*x + 0],
[2*x + 1, 3*x + 1],
[4*x + 2, 5*x + 2]]

and the bounds of the integrals are:

[[(0, 3), (0, 4)],
[(0, 3), (0, 4)],
[(0, 3), (0, 4)]]

In all cases the unused fourth parameter q is 'hello'.

2.3.5 Tophat and step functions

unit_tophat_ee(x) Tophat function on the unit interval, left-exclusive and
right-exclusive.

unit_tophat_ei(x) Tophat function on the unit interval, left-exclusive and
right-inclusive.

unit_tophat_ie(x) Tophat function on the unit interval, left-inclusive and
right-exclusive.

unit_tophat_ii(x) Tophat function on the unit interval, left-inclusive and
right-inclusive.

make_tophat_ee(lower, upper) Return a ufunc-like tophat function on the defined
range, left-exclusive and right-exclusive.

make_tophat_ei(lower, upper) Return a ufunc-like tophat function on the defined
range, left-exclusive and right-inclusive.

make_tophat_ie(lower, upper) Return a ufunc-like tophat function on the defined
range, left-inclusive and right-exclusive.

Continued on next page

2.3. Numerical utilities (pwkit.numutil) 27

pwkit, Release 1.0.0

Table 11 – continued from previous page
make_tophat_ii(lower, upper) Return a ufunc-like tophat function on the defined

range, left-inclusive and right-inclusive.
make_step_lcont(transition) Return a ufunc-like step function that is left-continuous.
make_step_rcont(transition) Return a ufunc-like step function that is right-

continuous.

pwkit.numutil.unit_tophat_ee(x)
Tophat function on the unit interval, left-exclusive and right-exclusive. Returns 1 if 0 < x < 1, 0 otherwise.

pwkit.numutil.unit_tophat_ei(x)
Tophat function on the unit interval, left-exclusive and right-inclusive. Returns 1 if 0 < x <= 1, 0 otherwise.

pwkit.numutil.unit_tophat_ie(x)
Tophat function on the unit interval, left-inclusive and right-exclusive. Returns 1 if 0 <= x < 1, 0 otherwise.

pwkit.numutil.unit_tophat_ii(x)
Tophat function on the unit interval, left-inclusive and right-inclusive. Returns 1 if 0 <= x <= 1, 0 otherwise.

pwkit.numutil.make_tophat_ee(lower, upper)
Return a ufunc-like tophat function on the defined range, left-exclusive and right-exclusive. Returns 1 if lower
< x < upper, 0 otherwise.

pwkit.numutil.make_tophat_ei(lower, upper)
Return a ufunc-like tophat function on the defined range, left-exclusive and right-inclusive. Returns 1 if lower
< x <= upper, 0 otherwise.

pwkit.numutil.make_tophat_ie(lower, upper)
Return a ufunc-like tophat function on the defined range, left-inclusive and right-exclusive. Returns 1 if lower
<= x < upper, 0 otherwise.

pwkit.numutil.make_tophat_ii(lower, upper)
Return a ufunc-like tophat function on the defined range, left-inclusive and right-inclusive. Returns 1 if lower <
x < upper, 0 otherwise.

pwkit.numutil.make_step_lcont(transition)
Return a ufunc-like step function that is left-continuous. Returns 1 if x > transition, 0 otherwise.

pwkit.numutil.make_step_rcont(transition)
Return a ufunc-like step function that is right-continuous. Returns 1 if x >= transition, 0 otherwise.

2.4 Framework for easy parallelized processing (pwkit.parallel)

A framework making it easy to write functions that can perform computations in parallel.

Use this framework if you are writing a function that you would like to perform some of its work in parallel, using
multiple CPUs at once. First, you must design the parallel part of the function’s operation to be implementable in terms
of the standard library map() function. Then, give your function an optional parallel=True keyword argument
and use the make_parallel_helper() function from this module like so:

from pwkit.parallel import make_parallel_helper

def my_parallelizable_function(arg1, arg1, parallel=True):
Get a "parallel helper" object that can provide us with a parallelized
"map" function. The caller specifies how the parallelization is done;
we don't have to know the details.
phelp = make_parallel_helper(parallel)

(continues on next page)

28 Chapter 2. Foundations

https://docs.python.org/3/library/functions.html#map

pwkit, Release 1.0.0

(continued from previous page)

...

When used as a context manager, the helper provides a function that
acts like the standard library function "map", except it may
parallelize its operation.
with phelp.get_map() as map:

results1 = map(my_subfunc1, subargs1)
...
results2 = map(my_subfunc2, subargs2)

... do stuff with results1 and results2 ...

Passing parallel=True to a function defined this way will cause it to parallelize map calls across all cores. Passing
parallel=0.5 will cause it to use about half your machine. Passing parallel=False will cause it to use serial
processing. The helper must be used as a context manager (via the with statement) because the parallel computation
may involve creating and destroying heavyweight resources (namely, child processes).

Along with standard ParallelHelper.get_map(), ParallelHelper instances support a “partially-
Pickling” map-like function ParallelHelper.get_ppmap() that works around Pickle-related limitations in
the multiprocessing library.

2.4.1 Main Interface

The most important parts of this module are the make_parallel_helper() function and the interface defined
by the abstract ParallelHelper class.

make_parallel_helper(parallel_arg, **kwargs) Return a ParallelHelper object that can be used
for easy parallelization of computations.

ParallelHelper Object that helps genericize the setup needed for paral-
lel computations.

pwkit.parallel.make_parallel_helper(parallel_arg, **kwargs)
Return a ParallelHelper object that can be used for easy parallelization of computations. parallel_arg is
an object that lets the caller easily specify the kind of parallelization they are interested in. Allowed values are:

False Serial processing only.

True Parallel processing using all available cores.

1 Equivalent to False.

Other positive integer Parallel processing using the specified number of cores.

x, 0 < x < 1 Parallel processing using about x * N cores, where N is the total number of cores in the system.
Note that the meanings of 0.99 and 1 as arguments are very different.

ParallelHelper instance Returns the instance.

The **kwargs are passed on to the appropriate ParallelHelper constructor, if the caller wants to do
something tricky.

Expected usage is:

from pwkit.parallel import make_parallel_helper

def sub_operation(arg):

(continues on next page)

2.4. Framework for easy parallelized processing (pwkit.parallel) 29

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

pwkit, Release 1.0.0

(continued from previous page)

... do some computation ...
return result

def my_parallelizable_function(arg1, arg2, parallel=True):
phelp = make_parallel_helper(parallel)

with phelp.get_map() as map:
op_results = map(sub_operation, args)

... reduce "op_results" in some way ...
return final_result

This means that my_parallelizable_function doesn’t have to worry about all of the various fancy
things the caller might want to do in terms of special parallel magic.

Note that sub_operation above must be defined in a stand-alone fashion because of the way
Python’s multiprocessing module works. This can be worked around somewhat with the special
ParallelHelper.get_ppmap() variant. This returns a “partially-Pickling” map operation — with
a different calling signature — that allows un-Pickle-able values to be used. See the documentation for
serial_ppmap() for usage information.

class pwkit.parallel.ParallelHelper
Object that helps genericize the setup needed for parallel computations. Each method returns a context manager
that wraps up any resource allocation and deallocation that may need to occur to make the parallelization happen
under the hood.

ParallelHelper objects should be obtained by calling make_parallel_helper(), not direct con-
struction, unless you have special needs. See the documentation of that function for an example of the general
usage pattern.

Once you have a ParallelHelper instance, usage should be something like:

with phelp.get_map() as map:
results_arr = map(my_function, my_args)

The partially-Pickling map works around a limitation in the multiprocessing library. This library spawns sub-
processes and executes parallel tasks by sending them to the subprocesses, which means that the data describing
the task must be pickle-able. There are hacks so that you can pass functions defined in the global namespace
but they’re pretty much useless in production code. The “partially-Pickling map” works around this by using a
different method that allows some arguments to the map operation to avoid being pickled. (Instead, they are di-
rectly inherited by os.fork()-ed subprocesses.) See the docs for serial_ppmap() for usage information.

get_map()
Get a context manager that yields a function with the same call signature as the standard library function
map(). Its results are the same, but it may evaluate the mapped function in parallel across multiple threads
or processes — the calling function should not have to particularly care about the details. Example usage
is:

with phelp.get_map() as map:
results_arr = map(my_function, my_args)

The passed function and its arguments must be Pickle-able. The alternate method get_ppmap() relaxes
this restriction somewhat.

get_ppmap()
Get a context manager that yields a “partially-pickling map function”. It can be used to perform a paral-

30 Chapter 2. Foundations

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/os.html#os.fork
https://docs.python.org/3/library/functions.html#map

pwkit, Release 1.0.0

lelized map() operation with some un-pickle-able arguments.

The yielded function has the signature of serial_ppmap(). Its behavior is functionally equivalent to
the following code, except that the calls to func may happen in parallel:

def ppmap(func, fixed_arg, var_arg_iter):
return [func(i, fixed_arg, x) for i, x in enumerate(var_arg_iter)]

The arguments to the ppmap function are:

func A callable taking three arguments and returning a Pickle-able value.

fixed_arg Any value, even one that is not pickle-able.

var_arg_iter An iterable that generates Pickle-able values.

The arguments to your func function, which actually does the interesting computations, are:

index The 0-based index number of the item being processed; often this can be ignored.

fixed_arg The same fixed_arg that was passed to ppmap.

var_arg The index’th item in the var_arg_iter iterable passed to ppmap.

This variant of the standard map() function exists to allow the parallel-processing system to work around
pickle-related limitations in the multiprocessing library.

2.4.2 Implementation Details

Some of these classes and functions may be useful for other modules, but in generally you need only concern yourself
with the make_parallel_helper() function and ParallelHelper base class.

SerialHelper([chunksize]) A ParallelHelper that actually does serial pro-
cessing.

serial_ppmap(func, fixed_arg, var_arg_iter) A serial implementation of the “partially-pickling
map” function returned by the ParallelHelper.
get_ppmap() interface.

MultiprocessingPoolHelper([chunksize]) A ParallelHelper that parallelizes computations
using Python’s multiprocessing.Pool with a
configurable number of processes.

multiprocessing_ppmap_worker(in_queue,
. . .)

Worker for the multiprocessing ppmap imple-
mentation.

InterruptiblePool([processes, initializer, . . .]) A modified version of multiprocessing.pool.Pool that
has better behavior with regard to KeyboardInterrupts
in the map method.

VacuousContextManager(value) A context manager that just returns a static value and
doesn’t do anything clever with exceptions.

class pwkit.parallel.SerialHelper(chunksize=None)
A ParallelHelper that actually does serial processing.

pwkit.parallel.serial_ppmap(func, fixed_arg, var_arg_iter)
A serial implementation of the “partially-pickling map” function returned by the ParallelHelper.
get_ppmap() interface. Its arguments are:

func A callable taking three arguments and returning a Pickle-able value.

fixed_arg Any value, even one that is not pickle-able.

2.4. Framework for easy parallelized processing (pwkit.parallel) 31

https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

pwkit, Release 1.0.0

var_arg_iter An iterable that generates Pickle-able values.

The functionality is:

def serial_ppmap(func, fixed_arg, var_arg_iter):
return [func(i, fixed_arg, x) for i, x in enumerate(var_arg_iter)]

Therefore the arguments to your func function, which actually does the interesting computations, are:

index The 0-based index number of the item being processed; often this can be ignored.

fixed_arg The same fixed_arg that was passed to ppmap.

var_arg The index’th item in the var_arg_iter iterable passed to ppmap.

class pwkit.parallel.MultiprocessingPoolHelper(chunksize=None, **pool_kwargs)
A ParallelHelper that parallelizes computations using Python’s multiprocessing.Pool with a con-
figurable number of processes. Actually, we use a wrapped version of multiprocessing.Pool that handles
KeyboardInterrupt exceptions more helpfully.

pwkit.parallel.multiprocessing_ppmap_worker(in_queue, out_queue, func, fixed_arg)
Worker for the multiprocessing ppmap implementation. Strongly derived from code posted on StackEx-
change by “klaus se”: http://stackoverflow.com/a/16071616/3760486.

class pwkit.parallel.InterruptiblePool(processes=None, initializer=None, initargs=(),
**kwargs)

A modified version of multiprocessing.pool.Pool that has better behavior with regard to KeyboardInterrupts in
the map method. Parameters:

processes The number of worker processes to use; defaults to the number of CPUs.

initializer Either None, or a callable that will be invoked by each worker process when it starts.

initargs Arguments for initializer.

kwargs Extra arguments. Python 2.7 supports a maxtasksperchild parameter.

Python’s multiprocessing.Pool class doesn’t interact well with KeyboardInterrupt signals, as documented in
places such as:

• http://stackoverflow.com/questions/1408356/

• http://stackoverflow.com/questions/11312525/

• http://noswap.com/blog/python-multiprocessing-keyboardinterrupt

Various workarounds have been shared. Here, we adapt the one proposed in the last link above, by John Reese,
and shared as

• https://github.com/jreese/multiprocessing-keyboardinterrupt/

This version is a drop-in replacement for multiprocessing.Pool . . . as long as the map() method is the only one
that needs to be interrupt-friendly.

class pwkit.parallel.VacuousContextManager(value)
A context manager that just returns a static value and doesn’t do anything clever with exceptions.

2.5 Quick enumerations of constant values (pwkit.simpleenum)

The pwkit.simpleenum module contains a single decorator function for creating “enumerations”, by which we
mean a group of named, un-modifiable values. For example:

32 Chapter 2. Foundations

https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
http://stackoverflow.com/a/16071616/3760486
http://stackoverflow.com/questions/1408356/
http://stackoverflow.com/questions/11312525/
http://noswap.com/blog/python-multiprocessing-keyboardinterrupt
https://github.com/jreese/multiprocessing-keyboardinterrupt/

pwkit, Release 1.0.0

from pwkit.simpleenum import enumeration

@enumeration
class Constants (object):
period_days = 2.771
period_hours = period_days * 24
n_iters = 300
etc

def myfunction ():
print ('the period is', Constants.period_hours, 'hours')

The class declaration syntax is handy here because it lets you define new values in relation to old values. In the
above example, you cannot change any of the properties of Constants once it is constructed.

Important: If you populate an enumeration with a mutable data type, however, we’re unable to prevent you from
modifying it. For instance, if you do this:

@enumeration
class Dangerous (object):
mutable = [1, 2]
immutable = (1, 2)

You can then do something like write Dangerous.mutable.append (3) and modify the value stored in the
enumeration. If you’re concerned about this, make sure to populate the enumeration with immutable classes such as
tuple, frozenset, int, and so on.

pwkit.simpleenum.enumeration(cls)
A very simple decorator for creating enumerations. Unlike Python 3.4 enumerations, this just gives a way to use
a class declaration to create an immutable object containing only the values specified in the class.

If the attribute __pickle_compat__ is set to True in the decorated class, the resulting enumeration value
will be callable such that EnumClass(x) = x. This is needed to unpickle enumeration values that were
previously implemented using enum.Enum.

2.5. Quick enumerations of constant values (pwkit.simpleenum) 33

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/enum.html#enum.Enum

pwkit, Release 1.0.0

34 Chapter 2. Foundations

CHAPTER 3

Scientific Algorithms

This documentation has a lot of stubs.

3.1 Basic astronomical calculations (pwkit.astutil)

This module provides functions and constants for doing a variety of basic calculations and conversions that come up
in astronomy.

This topics covered in this module are:

• Useful Constants

• Sexagesimal Notation

• Working with Angles

• Simple Operations on 2D Gaussians

• Basic Astrometry

• Miscellaneous Astronomical Computations

Angles are always measured in radians, whereas some other astronomical codebases prefer degrees.

3.1.1 Useful Constants

The following useful constants are provided:

pi Mathematical 𝜋.

twopi Mathematical 2𝜋.

halfpi Mathematical 𝜋/2.

R2A A constant for converting radians to arcseconds by multiplication:

35

pwkit, Release 1.0.0

arcsec = radians * astutil.R2A

Equal to 3600 * 180 / pi or about 206265.

A2R A constant for converting arcseconds to radians by multiplication:

radians = arcsec * astutil.A2R

R2D Analogous to R2A: a constant for converting radians to degrees

D2R Analogous to A2R: a constant for converting degrees to radians

R2H Analogous to R2A: a constant for converting radians to hours

H2R Analogous to A2R: a constant for converting hours to radians

F2S A constant for converting a Gaussian FWHM (full width at half maximum) to a standard deviation (𝜎) value by
multiplication:

sigma = fwhm * astutil.F2S

Equal to (8 * ln(2))**-0.5 or about 0.425.

S2F A constant for converting a Gaussian standard deviation (𝜎) value to a FWHM (full width at half maximum) by
multiplication.

J2000 The astronomical J2000.0 epoch as a MJD (modified Julian Date). Precisely equal to 51544.5.

3.1.2 Sexagesimal Notation

fmthours(radians[, norm, precision, seps]) Format an angle as sexagesimal hours in a string.
fmtdeglon(radians[, norm, precision, seps]) Format a longitudinal angle as sexagesimal degrees in a

string.
fmtdeglat(radians[, norm, precision, seps]) Format a latitudinal angle as sexagesimal degrees in a

string.
fmtradec(rarad, decrad[, precision, raseps, . . .]) Format equatorial coordinates in a single sexagesimal

string.
parsehours(hrstr) Parse a string formatted as sexagesimal hours into an

angle.
parsedeglat(latstr) Parse a latitude formatted as sexagesimal degrees into

an angle.
parsedeglon(lonstr) Parse a longitude formatted as sexagesimal degrees into

an angle.

pwkit.astutil.fmthours(radians, norm=’wrap’, precision=3, seps=’::’)
Format an angle as sexagesimal hours in a string.

Arguments are:

radians The angle, in radians.

norm (default “wrap”) The normalization mode, used for angles outside of the standard range of 0 to 2𝜋. If
“none”, the value is formatted ignoring any potential problems. If “wrap”, it is wrapped to lie within the
standard range. If “raise”, a ValueError is raised.

precision (default 3) The number of decimal places in the “seconds” place to use in the formatted string.

seps (default “::”) A two- or three-item iterable, used to separate the hours, minutes, and seconds components.

36 Chapter 3. Scientific Algorithms

https://docs.python.org/3/library/exceptions.html#ValueError

pwkit, Release 1.0.0

If a third element is present, it appears after the seconds component. Specifying “hms” yields something
like “12h34m56s”; specifying ['', ''] yields something like “123456”.

Returns a string.

pwkit.astutil.fmtdeglon(radians, norm=’wrap’, precision=2, seps=’::’)
Format a longitudinal angle as sexagesimal degrees in a string.

Arguments are:

radians The angle, in radians.

norm (default “wrap”) The normalization mode, used for angles outside of the standard range of 0 to 2𝜋. If
“none”, the value is formatted ignoring any potential problems. If “wrap”, it is wrapped to lie within the
standard range. If “raise”, a ValueError is raised.

precision (default 2) The number of decimal places in the “arcseconds” place to use in the formatted string.

seps (default “::”) A two- or three-item iterable, used to separate the degrees, arcminutes, and arcseconds
components. If a third element is present, it appears after the arcseconds component. Specifying “dms”
yields something like “12d34m56s”; specifying ['', ''] yields something like “123456”.

Returns a string.

pwkit.astutil.fmtdeglat(radians, norm=’raise’, precision=2, seps=’::’)
Format a latitudinal angle as sexagesimal degrees in a string.

Arguments are:

radians The angle, in radians.

norm (default “raise”) The normalization mode, used for angles outside of the standard range of -𝜋/2 to 𝜋/2.
If “none”, the value is formatted ignoring any potential problems. If “wrap”, it is wrapped to lie within the
standard range. If “raise”, a ValueError is raised.

precision (default 2) The number of decimal places in the “arcseconds” place to use in the formatted string.

seps (default “::”) A two- or three-item iterable, used to separate the degrees, arcminutes, and arcseconds
components. If a third element is present, it appears after the arcseconds component. Specifying “dms”
yields something like “+12d34m56s”; specifying ['', ''] yields something like “123456”.

Returns a string. The return value always includes a plus or minus sign. Note that the default of norm is different
than in fmthours() and fmtdeglon() since it’s not so clear what a “latitude” of 110 degrees (e.g.) means.

pwkit.astutil.fmtradec(rarad, decrad, precision=2, raseps=’::’, decseps=’::’, intersep=’ ’)
Format equatorial coordinates in a single sexagesimal string.

Returns a string of the RA/lon coordinate, formatted as sexagesimal hours, then intersep, then the Dec/lat
coordinate, formatted as degrees. This yields something like “12:34:56.78 -01:23:45.6”. Arguments are:

rarad The right ascension coordinate, in radians. More generically, this is the longitudinal coordinate; note that
the ordering in this function differs than the other spherical functions, which generally prefer coordinates
in “lat, lon” order.

decrad The declination coordinate, in radians. More generically, this is the latitudinal coordinate.

precision (default 2) The number of decimal places in the “arcseconds” place of the latitudinal (declination)
coordinate. The longitudinal (right ascension) coordinate gets one additional place, since hours are bigger
than degrees.

raseps (default “::”) A two- or three-item iterable, used to separate the hours, minutes, and seconds compo-
nents of the RA/lon coordinate. If a third element is present, it appears after the seconds component. Spec-
ifying “hms” yields something like “12h34m56s”; specifying ['', ''] yields something like “123456”.

3.1. Basic astronomical calculations (pwkit.astutil) 37

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pwkit, Release 1.0.0

decseps (default “::”) A two- or three-item iterable, used to separate the degrees, arcminutes, and arcseconds
components of the Dec/lat coordinate.

intersep (default ” “) The string separating the RA/lon and Dec/lat coordinates

pwkit.astutil.parsehours(hrstr)
Parse a string formatted as sexagesimal hours into an angle.

This function converts a textual representation of an angle, measured in hours, into a floating point value mea-
sured in radians. The format of hrstr is very limited: it may not have leading or trailing whitespace, and the
components of the sexagesimal representation must be separated by colons. The input must therefore resemble
something like "12:34:56.78". A ValueError will be raised if the input does not resemble this template.
Hours greater than 24 are not allowed, but negative values are.

pwkit.astutil.parsedeglat(latstr)
Parse a latitude formatted as sexagesimal degrees into an angle.

This function converts a textual representation of a latitude, measured in degrees, into a floating point value
measured in radians. The format of latstr is very limited: it may not have leading or trailing whitespace, and the
components of the sexagesimal representation must be separated by colons. The input must therefore resemble
something like "-00:12:34.5". A ValueError will be raised if the input does not resemble this template.
Latitudes greater than 90 or less than -90 degrees are not allowed.

pwkit.astutil.parsedeglon(lonstr)
Parse a longitude formatted as sexagesimal degrees into an angle.

This function converts a textual representation of a longitude, measured in degrees, into a floating point value
measured in radians. The format of lonstr is very limited: it may not have leading or trailing whitespace, and the
components of the sexagesimal representation must be separated by colons. The input must therefore resemble
something like "270:12:34.5". A ValueError will be raised if the input does not resemble this template.
Values of any sign and magnitude are allowed, and they are not normalized (e.g. to lie within the range [0, 2𝜋]).

3.1.3 Working with Angles

angcen(a)
orientcen(a)
sphdist(lat1, lon1, lat2, lon2) Calculate the distance between two locations on a

sphere.
sphbear(lat1, lon1, lat2, lon2[, tol]) Calculate the bearing between two locations on a

sphere.
sphofs(lat1, lon1, r, pa[, tol, rmax]) Offset from one location on the sphere to another.
parang(hourangle, declination, latitude) Calculate the parallactic angle of a sky position.

pwkit.astutil.angcen(a)
“Center” an angle a to be between -𝜋 and +𝜋.

This is done by adding or subtracting multiples of 2𝜋 as necessary. Both a and the return value are in radians.
The argument may be a vector.

pwkit.astutil.orientcen(a)
“Center” an orientation a to be between -𝜋/2 and +𝜋/2.

This is done by adding or subtract multiples of 𝜋 as necessary. Both a and the return value are in radians. The
argument may be a vector.

An “orientation” is different than an angle because values that differ by just 𝜋, not 2𝜋, are considered equivalent.
Orientations can come up in the discussion of linear polarization, for example.

38 Chapter 3. Scientific Algorithms

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pwkit, Release 1.0.0

pwkit.astutil.sphdist(lat1, lon1, lat2, lon2)
Calculate the distance between two locations on a sphere.

lat1 The latitude of the first location.

lon1 The longitude of the first location.

lat2 The latitude of the second location.

lon2 The longitude of the second location.

Returns the separation in radians. All arguments are in radians as well. The arguments may be vectors.

Note that the ordering of the arguments maps to the nonstandard ordering (Dec, RA) in equatorial coordi-
nates. In a spherical projection it maps to (Y, X) which may also be unexpected.

The distance is computed with the “specialized Vincenty formula”. Faster but more error-prone formulae are
possible; see Wikipedia on Great-circle Distance.

pwkit.astutil.sphbear(lat1, lon1, lat2, lon2, tol=1e-15)
Calculate the bearing between two locations on a sphere.

lat1 The latitude of the first location.

lon1 The longitude of the first location.

lat2 The latitude of the second location.

lon2 The longitude of the second location.

tol Tolerance for checking proximity to poles and rounding to zero.

The bearing (AKA the position angle, PA) is the orientation of point 2 with regards to point 1 relative to the
longitudinal axis. Returns the bearing in radians. All arguments are in radians as well. The arguments may be
vectors.

Note that the ordering of the arguments maps to the nonstandard ordering (Dec, RA) in equatorial coordi-
nates. In a spherical projection it maps to (Y, X) which may also be unexpected.

The sign convention is astronomical: bearings range from -𝜋 to 𝜋, with negative values if point 2 is in the
western hemisphere with regards to point 1, positive if it is in the eastern. (That is, “east from north”.) If point
1 is very near the pole, the bearing is undefined and the result is NaN.

The tol argument is used for checking proximity to the poles and for rounding the bearing to precisely zero if
it’s extremely small.

Derived from bear() in angles.py from Prasanth Nair. His version is BSD licensed. This one is sufficiently
different that I think it counts as a separate implementation.

pwkit.astutil.sphofs(lat1, lon1, r, pa, tol=0.01, rmax=None)
Offset from one location on the sphere to another.

This function is given a start location, expressed as a latitude and longitude, a distance to offset, and a direction
to offset (expressed as a bearing, AKA position angle). It uses these to compute a final location. This function
mirrors sphdist() and sphbear() such that:

If:
r = sphdist (lat1, lon1, lat2a, lon2a)
pa = sphbear (lat1, lon1, lat2a, lon2a)
lat2b, lon2b = sphofs (lat1, lon1, r, pa)
Then lat2b = lat2a and lon2b = lon2a

Arguments are:

lat1 The latitude of the start location.

3.1. Basic astronomical calculations (pwkit.astutil) 39

https://github.com/phn/angles

pwkit, Release 1.0.0

lon1 The longitude of the start location.

r The distance to offset by.

pa The position angle (“PA” or bearing) to offset towards.

tol The tolerance for the accuracy of the calculation.

rmax The maximum allowed offset distance.

Returns a pair (lat2, lon2). All arguments and the return values are measured in radians. The arguments
may be vectors. The PA sign convention is astronomical, measuring orientation east from north.

Note that the ordering of the arguments and return values maps to the nonstandard ordering (Dec, RA) in
equatorial coordinates. In a spherical projection it maps to (Y, X) which may also be unexpected.

The offset is computed naively as:

lat2 = lat1 + r * cos (pa)
lon2 = lon1 + r * sin (pa) / cos (lat2)

This will fail for large offsets. Error checking can be done in two ways. If tol is not None, sphdist() is
used to calculate the actual distance between the two locations, and if the magnitude of the fractional difference
between that and r is larger than tol, ValueError is raised. This will add an overhead to the computation that
may be significant if you’re going to be calling this function a lot.

Additionally, if rmax is not None, magnitudes of r greater than rmax are rejected. For reference, an r of 0.2
(~11 deg) gives a maximum fractional distance error of ~3%.

pwkit.astutil.parang(hourangle, declination, latitude)
Calculate the parallactic angle of a sky position.

This computes the parallactic angle of a sky position expressed in terms of an hour angle and declination.
Arguments:

hourangle The hour angle of the location on the sky.

declination The declination of the location on the sky.

latitude The latitude of the observatory.

Inputs and outputs are all in radians. Implementation adapted from GBTIDL parangle.pro.

3.1.4 Simple Operations on 2D Gaussians

pwkit.astutil.gaussian_convolve(maj1, min1, pa1, maj2, min2, pa2)
Convolve two Gaussians analytically.

Given the shapes of two 2-dimensional Gaussians, this function returns the shape of their convolution.

Arguments:

maj1 Major axis of input Gaussian 1.

min1 Minor axis of input Gaussian 1.

pa1 Orientation angle of input Gaussian 1, in radians.

maj2 Major axis of input Gaussian 2.

min2 Minor axis of input Gaussian 2.

pa2 Orientation angle of input Gaussian 2, in radians.

40 Chapter 3. Scientific Algorithms

https://docs.python.org/3/library/exceptions.html#ValueError

pwkit, Release 1.0.0

The return value is (maj3, min3, pa3), with the same format as the input arguments. The axes can be
measured in any units, so long as they’re consistent.

Implementation copied from MIRIAD’s gaufac.

pwkit.astutil.gaussian_deconvolve(smaj, smin, spa, bmaj, bmin, bpa)
Deconvolve two Gaussians analytically.

Given the shapes of 2-dimensional “source” and “beam” Gaussians, this returns a deconvolved “result” Gaussian
such that the convolution of “beam” and “result” is “source”.

Arguments:

smaj Major axis of source Gaussian.

smin Minor axis of source Gaussian.

spa Orientation angle of source Gaussian, in radians.

bmaj Major axis of beam Gaussian.

bmin Minor axis of beam Gaussian.

bpa Orientation angle of beam Gaussian, in radians.

The return value is (rmaj, rmin, rpa, status). The first three values have the same format as the
input arguments. The status result is one of “ok”, “pointlike”, or “fail”. A “pointlike” status indicates that
the source and beam shapes are difficult to distinguish; a “fail” status indicates that the two shapes seem to be
mutually incompatible (e.g., source and beam are very narrow and orthogonal).

The axes can be measured in any units, so long as they’re consistent.

Ideally if:

rmaj, rmin, rpa, status = gaussian_deconvolve (smaj, smin, spa, bmaj, bmin, bpa)

then:

smaj, smin, spa = gaussian_convolve (rmaj, rmin, rpa, bmaj, bmin, bpa)

Implementation derived from MIRIAD’s gaudfac. This function currently doesn’t do a great job of dealing
with pointlike sources, i.e. ones where “source” and “beam” are nearly indistinguishable.

3.1.5 Basic Astrometry

The AstrometryInfo class can be used to perform basic astrometric calculations that are nonetheless fairly accu-
rate.

class pwkit.astutil.AstrometryInfo(simbadident=None, **kwargs)
Holds astrometric data and their uncertainties, and can predict positions with uncertainties.

The attributes encoding the astrometric data are as follows. Values of None will be treated as unknown. Most of
this information can be automatically filled in from the fill_from_simbad() function, if you trust Simbad.

ra The J2000 right ascension of the object, measured in
radians.

dec The J2000 declination of the object, measured in ra-
dians.

pos_u_maj Major axis of the error ellipse for the object position,
in radians.

Continued on next page

3.1. Basic astronomical calculations (pwkit.astutil) 41

pwkit, Release 1.0.0

Table 3 – continued from previous page
pos_u_min Minor axis of the error ellipse for the object position,

in radians.
pos_u_pa Position angle (really orientation) of the error ellipse

for the object position, east from north, in radians.
pos_epoch The epoch of position, that is, the date when the po-

sition was measured, in MJD[TT].
promo_ra The proper motion in right ascension, in milliarcsec

per year.
promo_dec The object’s proper motion in declination, in mil-

liarcsec per year.
promo_u_maj Major axis of the error ellipse for the object’s proper

motion, in milliarcsec per year.
promo_u_min Minor axis of the error ellipse for the object’s proper

motion, in milliarcsec per year.
promo_u_pa Position angle (really orientation) of the error ellipse

for the object proper motion, east from north, in ra-
dians.

parallax The object’s parallax, in milliarcsec.
u_parallax Uncertainty in the object’s parallax, in milliarcsec.
vradial The object’s radial velocity, in km/s.
u_vradial The uncertainty in the object’s radial velocity, in

km/s.

Methods are:

verify([complain]) Validate that the attributes are self-consistent.
predict(mjd[, complain, n]) Predict the object position at a given MJD.
print_prediction(ptup[, precision]) Print a summary of a predicted position.
predict_without_uncertainties(mjd[,
complain])

Predict the object position at a given MJD.

fill_from_simbad(ident[, debug]) Fill in astrometric information using the Simbad web
service.

fill_from_allwise(ident[, catalog_ident]) Fill in astrometric information from the AllWISE
catalog using Astroquery.

The stringification of an AstrometryInfo class formats its fields in a human-readable, multiline format that
uses Unicode characters.

AstrometryInfo.ra = None
The J2000 right ascension of the object, measured in radians.

AstrometryInfo.dec = None
The J2000 declination of the object, measured in radians.

AstrometryInfo.pos_u_maj = None
Major axis of the error ellipse for the object position, in radians.

AstrometryInfo.pos_u_min = None
Minor axis of the error ellipse for the object position, in radians.

AstrometryInfo.pos_u_pa = None
Position angle (really orientation) of the error ellipse for the object position, east from north, in radians.

AstrometryInfo.pos_epoch = None
The epoch of position, that is, the date when the position was measured, in MJD[TT].

42 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

AstrometryInfo.promo_ra = None
The proper motion in right ascension, in milliarcsec per year. XXX: cos(dec) confusion!

AstrometryInfo.promo_dec = None
The object’s proper motion in declination, in milliarcsec per year.

AstrometryInfo.promo_u_maj = None
Major axis of the error ellipse for the object’s proper motion, in milliarcsec per year.

AstrometryInfo.promo_u_min = None
Minor axis of the error ellipse for the object’s proper motion, in milliarcsec per year.

AstrometryInfo.promo_u_pa = None
Position angle (really orientation) of the error ellipse for the object proper motion, east from north, in radians.

AstrometryInfo.parallax = None
The object’s parallax, in milliarcsec.

AstrometryInfo.u_parallax = None
Uncertainty in the object’s parallax, in milliarcsec.

AstrometryInfo.vradial = None
The object’s radial velocity, in km/s. NOTE: not relevant in our usage.

AstrometryInfo.u_vradial = None
The uncertainty in the object’s radial velocity, in km/s. NOTE: not relevant in our usage.

AstrometryInfo.verify(complain=True)
Validate that the attributes are self-consistent.

This function does some basic checks of the object attributes to ensure that astrometric calculations can legally
be performed. If the complain keyword is true, messages may be printed to sys.stderr if non-fatal issues
are encountered.

Returns self.

AstrometryInfo.predict(mjd, complain=True, n=20000)
Predict the object position at a given MJD.

The return value is a tuple (ra, dec, major, minor, pa), all in radians. These are the predicted posi-
tion of the object and its uncertainty at mjd. If complain is True, print out warnings for incomplete information.
n is the number of Monte Carlo samples to draw for computing the positional uncertainty.

The uncertainty ellipse parameters are sigmas, not FWHM. These may be converted with the S2F constant.

This function relies on the external skyfield package.

AstrometryInfo.print_prediction(ptup, precision=2)
Print a summary of a predicted position.

The argument ptup is a tuple returned by predict(). It is printed to sys.stdout in a reasonable format
that uses Unicode characters.

AstrometryInfo.predict_without_uncertainties(mjd, complain=True)
Predict the object position at a given MJD.

The return value is a tuple (ra, dec), in radians, giving the predicted position of the object at mjd. Unlike
predict(), the astrometric uncertainties are ignored. This function is therefore deterministic but potentially
misleading.

If complain is True, print out warnings for incomplete information.

This function relies on the external skyfield package.

3.1. Basic astronomical calculations (pwkit.astutil) 43

https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.stdout

pwkit, Release 1.0.0

AstrometryInfo.fill_from_simbad(ident, debug=False)
Fill in astrometric information using the Simbad web service.

This uses the CDS Simbad web service to look up astrometric information for the source name ident and fills in
attributes appropriately. Values from Simbad are not always reliable.

Returns self.

AstrometryInfo.fill_from_allwise(ident, catalog_ident=’II/328/allwise’)
Fill in astrometric information from the AllWISE catalog using Astroquery.

This uses the astroquery module to query the AllWISE (2013wise.rept. . . .1C) source catalog through the
Vizier (2000A&AS..143. . . 23O) web service. It then fills in the instance with the relevant information. Argu-
ments are:

ident The AllWISE catalog identifier of the form "J112254.70+255021.9".

catalog_ident The Vizier designation of the catalog to query. The default is “II/328/allwise”, the current version
of the AllWISE catalog.

Raises PKError if something unexpected happens that doesn’t itself result in an exception within
astroquery.

You should probably prefer fill_from_simbad() for objects that are known to the CDS Simbad service,
but not all objects in the AllWISE catalog are so known.

If you use this function, you should acknowledge AllWISE and Vizier.

Returns self.

A few helper functions may also be of interest:

load_skyfield_data() Load data files used in Skyfield.
get_2mass_epoch(tmra, tmdec[, debug]) Given a 2MASS position, look up the epoch when it was

observed.
get_simbad_astrometry_info(ident[, items,
debug])

Fetch astrometric information from the Simbad web ser-
vice.

pwkit.astutil.load_skyfield_data()
Load data files used in Skyfield. This will download files from the internet if they haven’t been downloaded
before.

Skyfield downloads files to the current directory by default, which is not ideal. Here we abuse astropy and use
its cache directory to cache the data files per-user. If we start downloading files in other places in pwkit we
should maybe make this system more generic. And the dep on astropy is not at all necessary.

Skyfield will print out a progress bar as it downloads things.

Returns (planets, ts), the standard Skyfield ephemeris and timescale data files.

pwkit.astutil.get_2mass_epoch(tmra, tmdec, debug=False)
Given a 2MASS position, look up the epoch when it was observed.

This function uses the CDS Vizier web service to look up information in the 2MASS point source database.
Arguments are:

tmra The source’s J2000 right ascension, in radians.

tmdec The source’s J2000 declination, in radians.

debug If True, the web server’s response will be printed to sys.stdout.

44 Chapter 3. Scientific Algorithms

http://irsadist.ipac.caltech.edu/wise-allwise/
http://cds.u-strasbg.fr/vizier-org/licences_vizier.html
https://docs.python.org/3/library/sys.html#sys.stdout

pwkit, Release 1.0.0

The return value is an MJD. If the lookup fails, a message will be printed to sys.stderr (unconditionally!)
and the J2000 epoch will be returned.

pwkit.astutil.get_simbad_astrometry_info(ident, items=[’COO(d;A)’, ’COO(d;D)’,
’COO(E)’, ’COO(B)’, ’PM(A)’, ’PM(D)’,
’PM(E)’, ’PLX(V)’, ’PLX(E)’, ’RV(V)’, ’RV(E)’],
debug=False)

Fetch astrometric information from the Simbad web service.

Given the name of a source as known to the CDS Simbad service, this function looks up its positional in-
formation and returns it in a dictionary. In most cases you should use an AstrometryInfo object and its
fill_from_simbad() method instead of this function.

Arguments:

ident The Simbad name of the source to look up.

items An iterable of data items to look up. The default fetches position, proper motion, parallax, and radial
velocity information. Each item name resembles the string COO(d;A) or PLX(E). The allowed formats
are defined on this CDS page.

debug If true, the response from the webserver will be printed.

The return value is a dictionary with a key corresponding to the textual result returned for each requested item.

3.1.6 Miscellaneous Astronomical Computations

These functions don’t fit under the other rubrics very well.

abs2app(abs_mag, dist_pc) Convert an absolute magnitude to an apparent magni-
tude, given a source’s (luminosity) distance in parsecs.

app2abs(app_mag, dist_pc) Convert an apparent magnitude to an absolute magni-
tude, given a source’s (luminosity) distance in parsecs.

pwkit.astutil.abs2app(abs_mag, dist_pc)
Convert an absolute magnitude to an apparent magnitude, given a source’s (luminosity) distance in parsecs.

Arguments:

abs_mag Absolute magnitude.

dist_pc Distance, in parsecs.

Returns the apparent magnitude. The arguments may be vectors.

pwkit.astutil.app2abs(app_mag, dist_pc)
Convert an apparent magnitude to an absolute magnitude, given a source’s (luminosity) distance in parsecs.

Arguments:

app_mag Apparent magnitude.

dist_pc Distance, in parsecs.

Returns the absolute magnitude. The arguments may be vectors.

3.1. Basic astronomical calculations (pwkit.astutil) 45

https://docs.python.org/3/library/sys.html#sys.stderr
http://simbad.u-strasbg.fr/Pages/guide/sim-fscript.htx

pwkit, Release 1.0.0

3.2 File-format-agnostic loading of astronomical images (pwkit.
astimage)

pwkit.astimage – generic loading of (radio) astronomical images

Use open (path, mode) to open an astronomical image, regardless of its file format.

The emphasis of this module is on getting 90%-good-enough semantics and a really, genuinely, uniform interface.
This can be tough to achieve.

exception pwkit.astimage.UnsupportedError(fmt, *args)

class pwkit.astimage.AstroImage(path, mode)
An astronomical image.

path The filesystem path of the image.

mode Its access mode: ‘r’ for read, ‘rw’ for read/write.

shape The data shape, like numpy.ndarray.shape.

bmaj If not None, the restoring beam FWHM major axis in radians.

bmin If not None, the restoring beam FWHM minor axis in radians.

bpa If not None, the restoring beam position angle (east from celestial north) in radians.

units Lower-case string describing image units (e.g., jy/beam, jy/pixel). Not standardized between formats.

pclat Latitude (usually dec) of the pointing center in radians.

pclon Longitude (usually RA) of the pointing center in radians.

charfreq Characteristic observing frequency of the image in GHz.

mjd Mean MJD of the observations.

axdescs If not None, list of strings describing the axis types. Not standardized.

size The number of pixels in the image (=shape.prod ()).

Methods:

close Close the image.

read Read all of the data.

write Rewrite all of the data.

toworld Convert pixel coordinates to world coordinates.

topixel Convert world coordinates to pixel coordinates.

simple Convert to a 2D lat/lon image.

subimage Extract a sub-cube of the image.

save_copy Save a copy of the image.

save_as_fits Save a copy of the image in FITS format.

delete Delete the on-disk image.

axdescs = None
If not None, list of strings describing the axis types; no standard format.

bmaj = None
If not None, the restoring beam FWHM major axis in radians

46 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

bmin = None
If not None, the restoring beam FWHM minor axis in radians

bpa = None
If not None, the restoring beam position angle (east from celestial north) in radians

charfreq = None
Characteristic observing frequency of the image in GHz

mjd = None
Mean MJD of the observations

pclat = None
Latitude of the pointing center in radians

pclon = None
Longitude of the pointing center in radians

shape = None
An integer ndarray of the image shape

subimage(pixofs, shape)
Extract a sub-cube of this image.

Both pixofs and shape should be integer arrays with as many elements as this image has axes. Thinking
of this operation as taking a Python slice of an N-dimensional cube, the i’th axis of the sub-image is slices
from pixofs[i] to pixofs[i] + shape[i].

units = None
Lower-case string describing image units (e.g., jy/beam, jy/pixel)

class pwkit.astimage.MIRIADImage(path, mode)
A MIRIAD format image. Requires the mirtask module from miriad-python.

class pwkit.astimage.PyrapImage(path, mode)
A CASA-format image loaded with the ‘pyrap’ Python module.

class pwkit.astimage.FITSImage(path, mode)
A FITS format image.

class pwkit.astimage.SimpleImage(parent)
A 2D, latitude/longitude image, referenced to a parent image.

3.3 The Bayesian Blocks algorithm (pwkit.bblocks)

pwkit.bblocks - Bayesian Blocks analysis, with a few extensions.

Bayesian Blocks analysis for the “time tagged” case described by Scargle+ 2013. Inspired by the bayesian_blocks
implementation by Jake Vanderplas in the AstroML package, but that turned out to have some limitations.

We have iterative determination of the best number of blocks (using an ad-hoc routine described in Scargle+ 2013)
and bootstrap-based determination of uncertainties on the block heights (ditto).

Functions are:

bin_bblock() Bayesian Blocks analysis with counts and bins.

tt_bblock() BB analysis of time-tagged events.

bs_tt_bblock() Like tt_bblock() with bootstrap-based uncertainty assessment. NOTE: the uncertainties
are not very reliable!

3.3. The Bayesian Blocks algorithm (pwkit.bblocks) 47

pwkit, Release 1.0.0

pwkit.bblocks.bin_bblock(widths, counts, p0=0.05)
Fundamental Bayesian Blocks algorithm. Arguments:

widths - Array of consecutive cell widths. counts - Array of numbers of counts in each cell. p0=0.05 - Probability
of preferring solutions with additional bins.

Returns a Holder with:

blockstarts - Start times of output blocks. counts - Number of events in each output block. finalp0 - Final
value of p0, after iteration to minimize nblocks. nblocks - Number of output blocks. ncells - Number of input
cells/bins. origp0 - Original value of p0. rates - Event rate associated with each block. widths - Width of each
output block.

pwkit.bblocks.tt_bblock(tstarts, tstops, times, p0=0.05, intersect_with_bins=False)
Bayesian Blocks for time-tagged events. Arguments:

tstarts Array of input bin start times.

tstops Array of input bin stop times.

times Array of event arrival times.

p0 = 0.05 Probability of preferring solutions with additional bins.

intersect_with_bins = False If true, intersect bblock bins with input bins; can result in more bins than bblocks
wants; they will have the same rate values.

Returns a Holder with:

counts Number of events in each output block.

finalp0 Final value of p0, after iteration to minimize nblocks.

ledges Times of left edges of output blocks.

midpoints Times of midpoints of output blocks.

nblocks Number of output blocks.

ncells Number of input cells/bins.

origp0 Original value of p0.

rates Event rate associated with each block.

redges Times of right edges of output blocks.

widths Width of each output block.

Bin start/stop times are best derived from a 1D Voronoi tesselation of the event arrival times, with some kind of
global observation start/stop time setting the extreme edges. Or they can be set from “good time intervals” if
observations were toggled on or off as in an X-ray telescope.

If intersect_with_bins is True, the true Bayesian Blocks bins (BBBs) are intersected with the “good time inter-
vals” (GTIs) defined by the tstarts and tstops variables. One GTI may contain multiple BBBs if the event rate
appears to change within the GTI, and one BBB may span multiple GTIs if the event date does not appear to
change between the GTIs. The intersection will ensure that no BBB intervals cross the edge of a GTI. If this
would happen, the BBB is split into multiple, partially redundant records. Each of these records will have the
same value for the counts, rates, and widths values. However, the ledges, redges, and midpoints values will
be recalculated. Note that in this mode, it is not necessarily true that widths = ledges - redges as is
usually the case. When this flag is true, keep in mind that multiple bins are therefore not necessarily independent
statistical samples.

48 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

pwkit.bblocks.bs_tt_bblock(times, tstarts, tstops, p0=0.05, nbootstrap=512)
Bayesian Blocks for time-tagged events with bootstrapping uncertainty assessment. THE UNCERTAINTIES
ARE NOT VERY GOOD! Arguments:

tstarts - Array of input bin start times. tstops - Array of input bin stop times. times - Array of event arrival times.
p0=0.05 - Probability of preferring solutions with additional bins. nbootstrap=512 - Number of bootstrap runs
to perform.

Returns a Holder with:

blockstarts - Start times of output blocks. bsrates - Mean event rate in each bin from bootstrap analysis. bsrstds -
~Uncertainty: stddev of event rate in each bin from bootstrap analysis. counts - Number of events in each output
block. finalp0 - Final value of p0, after iteration to minimize nblocks. ledges - Times of left edges of output
blocks. midpoints - Times of midpoints of output blocks. nblocks - Number of output blocks. ncells - Number
of input cells/bins. origp0 - Original value of p0. rates - Event rate associated with each block. redges - Times
of right edges of output blocks. widths - Width of each output block.

3.4 Constants in CGS units (pwkit.cgs)

pwkit.cgs - Physical constants in CGS.

Specifically, ESU-CGS im which the electron charge is measured in esu Franklin statcoulomb.

a0 - Bohr radius [cm] alpha - Fine structure constant [ø] arad - Radiation constant [erg/cm3/K4] aupercm - AU per cm
c - Speed of light [cm/s] cgsperjy - [erg/s/cm2/Hz] per Jy cmperau - cm per AU cmperpc - cm per parsec conjaaev -
eV/Angstrom conjugation factor: AA = conjaaev / eV [Å·eV] e - electron charge [esu] ergperev - erg per eV euler -
Euler’s constant (2.71828. . .) [ø] evpererg - eV per erg G - Gravitational constant [cm3/g/s2] h - Planck’s constant [erg
s] hbar - Reduced Planck’s constant [erg·s] jypercgs - Jy per [erg/s/cm2/Hz] k - Boltzmann’s constant [erg/K] lsun -
Luminosity of the Sun [erg/s] me - Mass of the electron [g] mearth - Mass of the Earth [g] mjup - Mass of Jupiter [g]
mp - Mass of the proton [g] msun - Mass of the Sun [g] mu_e - Magnetic moment of the electron [esu·cm2/s] pcpercm
- parsec per cm pi - Pi [ø] r_e - Classical radius of the electron [cm] rearth - Radius of the earth [cm] rjup - Radius of
Jupiter [cm] rsun - Radius of the Sun [cm] ryd1 - Rydberg energy [erg] sigma - Stefan-Boltzmann constant [erg/s/K4]
sigma_T - Thomson cross section of the electron [cm2] spersyr - Seconds per sidereal year syrpers - Sidereal years per
second tsun - Effective temperature of the Sun [K]

Functions:

blambda - Planck function (Hz, K) -> erg/s/cm2/Hz/sr. bnu - Planck function (cm, K) -> erg/s/cm2/cm/sr. exp - Numpy
exp() function. log - Numpy log() function. log10 - Numpy log10() function. sqrt - Numpy sqrt() function.

For reference: the esu has dimensions of g^(1/2) cm^(3/2) s^-1. Electric and magnetic field have g^(1/2) cm^(-1/2)
s^-1. [esu * field] = dyne.

3.5 Simple synchrotron radiation emission coefficients (pwkit.
dulk_models)

Model radio-wavelength radiative transfer using the Dulk (1985) equations.

Note that the gyrosynchrotron and relativistic synchrotron expressions can give very different answers! For s=20,
delta=3, theta=0.7, the results differ by three orders of magnitude for 𝜂! The paper is a bit vague but mentions
that the gyrosynchrotron case is when “𝛾 <~ 2 or 3”. The synchrotron functions give results compatible with Sym-
phony/Rimphony; the gyrosynchrotron ones do not, although I’ve only tentatively explored what happens if you given
Symphony/Rimphony very low cuts on their gamma values.

3.4. Constants in CGS units (pwkit.cgs) 49

pwkit, Release 1.0.0

The models are from Dulk (1985; 1985ARA&A..23..169D; doi:10.1146/annurev.aa.23.090185.001125). There are
three versions:

• Free-free emission

• Gyrosynchrotron emission

• Relativistic synchrotron emission

• Helpers

3.5.1 Free-free emission

calc_freefree_kappa(ne, t, hz) Dulk (1985) eq 20, assuming pure hydrogen.
calc_freefree_eta(ne, t, hz) Dulk (1985) equations 7 and 20, assuming pure hydro-

gen.
calc_freefree_snu_ujy(ne, t, width, . . .) Calculate a flux density from pure free-free emission.

pwkit.dulk_models.calc_freefree_kappa(ne, t, hz)
Dulk (1985) eq 20, assuming pure hydrogen.

pwkit.dulk_models.calc_freefree_eta(ne, t, hz)
Dulk (1985) equations 7 and 20, assuming pure hydrogen.

pwkit.dulk_models.calc_freefree_snu_ujy(ne, t, width, elongation, dist, ghz)
Calculate a flux density from pure free-free emission.

3.5.2 Gyrosynchrotron emission

calc_gs_kappa(b, ne, delta, sinth, nu) Calculate the gyrosynchrotron absorption coefficient
𝜅_𝜈.

calc_gs_eta(b, ne, delta, sinth, nu) Calculate the gyrosynchrotron emission coefficient 𝜂_𝜈.
calc_gs_snu_ujy(b, ne, delta, sinth, width, . . .) Calculate a flux density from pure gyrosynchrotron

emission.

pwkit.dulk_models.calc_gs_kappa(b, ne, delta, sinth, nu)
Calculate the gyrosynchrotron absorption coefficient 𝜅_𝜈.

This is Dulk (1985) equation 36, which is a fitting function assuming a power-law electron population. Argu-
ments are:

b Magnetic field strength in Gauss

ne The density of electrons per cubic centimeter with energies greater than 10 keV.

delta The power-law index defining the energy distribution of the electron population, with n(E) ~
E^(-delta). The equation is valid for 2 <~ delta <~ 7.

sinth The sine of the angle between the line of sight and the magnetic field direction. The equation is valid for
𝜃 > 20° or sinth > 0.34 or so.

nu The frequency at which to calculate 𝜂, in Hz. The equation is valid for 10 <~ nu/nu_b <~ 100, which
sets a limit on the ratio of nu and b.

The return value is the absorption coefficient, in units of cm^-1.

No complaints are raised if you attempt to use the equation outside of its range of validity.

50 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

pwkit.dulk_models.calc_gs_eta(b, ne, delta, sinth, nu)
Calculate the gyrosynchrotron emission coefficient 𝜂_𝜈.

This is Dulk (1985) equation 35, which is a fitting function assuming a power-law electron population. Argu-
ments are:

b Magnetic field strength in Gauss

ne The density of electrons per cubic centimeter with energies greater than 10 keV.

delta The power-law index defining the energy distribution of the electron population, with n(E) ~
E^(-delta). The equation is valid for 2 <~ delta <~ 7.

sinth The sine of the angle between the line of sight and the magnetic field direction. The equation is valid for
𝜃 > 20° or sinth > 0.34 or so.

nu The frequency at which to calculate 𝜂, in Hz. The equation is valid for 10 <~ nu/nu_b <~ 100, which
sets a limit on the ratio of nu and b.

The return value is the emission coefficient (AKA “emissivity”), in units of erg s^-1 Hz^-1 cm^-3
sr^-1.

No complaints are raised if you attempt to use the equation outside of its range of validity.

pwkit.dulk_models.calc_gs_snu_ujy(b, ne, delta, sinth, width, elongation, dist, ghz)
Calculate a flux density from pure gyrosynchrotron emission.

This combines Dulk (1985) equations 35 and 36, which are fitting functions assuming a power-law electron
population, with standard radiative transfer through a uniform medium. Arguments are:

b Magnetic field strength in Gauss

ne The density of electrons per cubic centimeter with energies greater than 10 keV.

delta The power-law index defining the energy distribution of the electron population, with n(E) ~
E^(-delta). The equation is valid for 2 <~ delta <~ 7.

sinth The sine of the angle between the line of sight and the magnetic field direction. The equation is valid for
𝜃 > 20° or sinth > 0.34 or so.

width The characteristic cross-sectional width of the emitting region, in cm.

elongation The the elongation of the emitting region; depth = width * elongation.

dist The distance to the emitting region, in cm.

ghz The frequencies at which to evaluate the spectrum, in GHz.

The return value is the flux density in 𝜇Jy. The arguments can be Numpy arrays.

No complaints are raised if you attempt to use the equations outside of their range of validity.

3.5.3 Relativistic synchrotron emission

calc_synch_kappa(b, ne, delta, sinth, nu[, E0]) Calculate the relativstic synchrotron absorption coeffi-
cient 𝜅_𝜈.

calc_synch_eta(b, ne, delta, sinth, nu[, E0]) Calculate the relativistic synchrotron emission coeffi-
cient 𝜂_𝜈.

calc_synch_snu_ujy(b, ne, delta, sinth, . . .) Calculate a flux density from pure gyrosynchrotron
emission.

3.5. Simple synchrotron radiation emission coefficients (pwkit.dulk_models) 51

pwkit, Release 1.0.0

pwkit.dulk_models.calc_synch_kappa(b, ne, delta, sinth, nu, E0=1.0)
Calculate the relativstic synchrotron absorption coefficient 𝜅_𝜈.

This is Dulk (1985) equation 41, which is a fitting function assuming a power-law electron population. Argu-
ments are:

b Magnetic field strength in Gauss

ne The density of electrons per cubic centimeter with energies greater than E0.

delta The power-law index defining the energy distribution of the electron population, with n(E) ~
E^(-delta). The equation is valid for 2 <~ delta <~ 5.

sinth The sine of the angle between the line of sight and the magnetic field direction. It’s not specified for what
range of values the expressions work well.

nu The frequency at which to calculate 𝜂, in Hz. The equation is valid for It’s not specified for what range of
values the expressions work well.

E0 The minimum energy of electrons to consider, in MeV. Defaults to 1 so that these functions can be called
identically to the gyrosynchrotron functions.

The return value is the absorption coefficient, in units of cm^-1.

No complaints are raised if you attempt to use the equation outside of its range of validity.

pwkit.dulk_models.calc_synch_eta(b, ne, delta, sinth, nu, E0=1.0)
Calculate the relativistic synchrotron emission coefficient 𝜂_𝜈.

This is Dulk (1985) equation 40, which is an approximation assuming a power-law electron population. Argu-
ments are:

b Magnetic field strength in Gauss

ne The density of electrons per cubic centimeter with energies greater than E0.

delta The power-law index defining the energy distribution of the electron population, with n(E) ~
E^(-delta). The equation is valid for 2 <~ delta <~ 5.

sinth The sine of the angle between the line of sight and the magnetic field direction. It’s not specified for what
range of values the expressions work well.

nu The frequency at which to calculate 𝜂, in Hz. The equation is valid for It’s not specified for what range of
values the expressions work well.

E0 The minimum energy of electrons to consider, in MeV. Defaults to 1 so that these functions can be called
identically to the gyrosynchrotron functions.

The return value is the emission coefficient (AKA “emissivity”), in units of erg s^-1 Hz^-1 cm^-3
sr^-1.

No complaints are raised if you attempt to use the equation outside of its range of validity.

pwkit.dulk_models.calc_synch_snu_ujy(b, ne, delta, sinth, width, elongation, dist, ghz, E0=1.0)
Calculate a flux density from pure gyrosynchrotron emission.

This combines Dulk (1985) equations 40 and 41, which are fitting functions assuming a power-law electron
population, with standard radiative transfer through a uniform medium. Arguments are:

b Magnetic field strength in Gauss

ne The density of electrons per cubic centimeter with energies greater than 10 keV.

delta The power-law index defining the energy distribution of the electron population, with n(E) ~
E^(-delta). The equation is valid for 2 <~ delta <~ 5.

52 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

sinth The sine of the angle between the line of sight and the magnetic field direction. It’s not specified for what
range of values the expressions work well.

width The characteristic cross-sectional width of the emitting region, in cm.

elongation The the elongation of the emitting region; depth = width * elongation.

dist The distance to the emitting region, in cm.

ghz The frequencies at which to evaluate the spectrum, in GHz.

E0 The minimum energy of electrons to consider, in MeV. Defaults to 1 so that these functions can be called
identically to the gyrosynchrotron functions.

The return value is the flux density in 𝜇Jy. The arguments can be Numpy arrays.

No complaints are raised if you attempt to use the equations outside of their range of validity.

3.5.4 Helpers

calc_nu_b(b) Calculate the cyclotron frequency in Hz given a mag-
netic field strength in Gauss.

calc_snu(eta, kappa, width, elongation, dist) Calculate the flux density S_𝜈 given a simple physical
configuration.

pwkit.dulk_models.calc_nu_b(b)
Calculate the cyclotron frequency in Hz given a magnetic field strength in Gauss.

This is in cycles per second not radians per second; i.e. there is a 2𝜋 in the denominator: 𝜈_B = e B / (2𝜋 m_e
c)

pwkit.dulk_models.calc_snu(eta, kappa, width, elongation, dist)
Calculate the flux density S_𝜈 given a simple physical configuration.

This is basic radiative transfer as per Dulk (1985) equations 5, 6, and 11.

eta The emissivity, in units of erg s^-1 Hz^-1 cm^-3 sr^-1.

kappa The absorption coefficient, in units of cm^-1.

width The characteristic cross-sectional width of the emitting region, in cm.

elongation The the elongation of the emitting region; depth = width * elongation.

dist The distance to the emitting region, in cm.

The return value is the flux density, in units of erg s^-1 cm^-2 Hz^-1. The angular size of the source is
taken to be (width / dist)**2.

3.6 Representations of and computations with ellipses (pwkit.
ellipses)

pwkit.ellipses - utilities for manipulating 2D Gaussians and ellipses

XXXXXXX XXX this code is in an incomplete state of being vectorized!!! XXXXXXX

Useful for sources and bivariate error distributions. We can express the shape of the function in several ways, which
have different strengths and weaknesses:

3.6. Representations of and computations with ellipses (pwkit.ellipses) 53

pwkit, Release 1.0.0

• “biv”, as in Gaussian bivariate: sigma x, sigma y, cov(x,y)

• “ell”, as in ellipse: major, minor, PA [*]

• “abc”: coefficients such that z = exp (ax2 + bxy + cy2)

[*] Any slice through a 2D Gaussian is an ellipse. Ours is defined such it is the same as a Gaussian bivariate when
major = minor.

Note that when considering astronomical position angles, conventionally defined as East from North, the Dec/lat axis
should be considered the X axis and the RA/long axis should be considered the Y axis.

pwkit.ellipses.sigmascale(nsigma)
Say we take a Gaussian bivariate and convert the parameters of the distribution to an ellipse (major, minor, PA).
By what factor should we scale those axes to make the area of the ellipse correspond to the n-sigma confidence
interval?

Negative or zero values result in NaN.

pwkit.ellipses.clscale(cl)
Say we take a Gaussian bivariate and convert the parameters of the distribution to an ellipse (major, minor, PA).
By what factor should we scale those axes to make the area of the ellipse correspond to the confidence interval
CL? (I.e. 0 < CL < 1)

pwkit.ellipses.bivell(sx, sy, cxy)
Given the parameters of a Gaussian bivariate distribution, compute the parameters for the equivalent 2D Gaus-
sian in ellipse form (major, minor, pa).

Inputs:

• sx: standard deviation (not variance) of x var

• sy: standard deviation (not variance) of y var

• cxy: covariance (not correlation coefficient) of x and y

Outputs:

• mjr: major axis of equivalent 2D Gaussian (sigma, not FWHM)

• mnr: minor axis

• pa: position angle, rotating from +x to +y

Lots of sanity-checking because it’s obnoxiously easy to have numerics that just barely blow up on you.

pwkit.ellipses.bivnorm(sx, sy, cxy)
Given the parameters of a Gaussian bivariate distribution, compute the correct normalization for the equivalent
2D Gaussian. It’s 1 / (2 pi sqrt (sx**2 sy**2 - cxy**2). This function adds a lot of sanity checking.

Inputs:

• sx: standard deviation (not variance) of x var

• sy: standard deviation (not variance) of y var

• cxy: covariance (not correlation coefficient) of x and y

Returns: the scalar normalization

pwkit.ellipses.bivabc(sx, sy, cxy)
Compute nontrivial parameters for evaluating a bivariate distribution as a 2D Gaussian. Inputs:

• sx: standard deviation (not variance) of x var

• sy: standard deviation (not variance) of y var

54 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

• cxy: covariance (not correlation coefficient) of x and y

Returns: (a, b, c), where z = k exp (ax2 + bxy + cy2)

The proper value for k can be obtained from bivnorm().

pwkit.ellipses.databiv(xy, coordouter=False, **kwargs)
Compute the main parameters of a bivariate distribution from data. The parameters are returned in the same
format as used in the rest of this module.

• xy: a 2D data array of shape (2, nsamp) or (nsamp, 2)

• coordouter: if True, the coordinate axis is the outer axis; i.e. the shape is (2, nsamp). Otherwise, the
coordinate axis is the inner axis; i.e. shape is (nsamp, 2).

Returns: (sx, sy, cxy)

In both cases, the first slice along the coordinate axis gives the X data (i.e., xy[0] or xy[:,0]) and the second slice
gives the Y data (xy[1] or xy[:,1]).

pwkit.ellipses.bivrandom(x0, y0, sx, sy, cxy, size=None)
Compute random values distributed according to the specified bivariate distribution.

Inputs:

• x0: the center of the x distribution (i.e. its intended mean)

• y0: the center of the y distribution

• sx: standard deviation (not variance) of x var

• sy: standard deviation (not variance) of y var

• cxy: covariance (not correlation coefficient) of x and y

• size (optional): the number of values to compute

Returns: array of shape (size, 2); or just (2,), if size was not specified.

The bivariate parameters of the generated data are approximately recoverable by calling ‘databiv(retval)’.

pwkit.ellipses.ellpoint(mjr, mnr, pa, th)
Compute a point on an ellipse parametrically. Inputs:

• mjr: major axis (sigma not FWHM) of the ellipse

• mnr: minor axis (sigma not FWHM) of the ellipse

• pa: position angle (from +x to +y) of the ellipse, radians

• th: the parameter, 0 <= th < 2pi: the eccentric anomaly

Returns: (x, y)

th may be a vector, in which case x and y will be as well.

pwkit.ellipses.elld2(x0, y0, mjr, mnr, pa, x, y)
Given an 2D Gaussian expressed as an ellipse (major, minor, pa), compute a “squared distance parameter” such
that

z = exp (-0.5 * d2)

Inputs:

• x0: position of Gaussian center on x axis

• y0: position of Gaussian center on y axis

3.6. Representations of and computations with ellipses (pwkit.ellipses) 55

pwkit, Release 1.0.0

• mjr: major axis (sigma not FWHM) of the Gaussian

• mnr: minor axis (sigma not FWHM) of the Gaussian

• pa: position angle (from +x to +y) of the Gaussian, radians

• x: x coordinates of the locations for which to evaluate d2

• y: y coordinates of the locations for which to evaluate d2

Returns: d2, distance parameter defined as above.

x0, y0, mjr, and mnr may be in any units so long as they’re consistent. x and y may be arrays (of the same
shape), in which case d2 will be an array as well.

pwkit.ellipses.ellbiv(mjr, mnr, pa)
Given a 2D Gaussian expressed as an ellipse (major, minor, pa), compute the equivalent parameters for a Gaus-
sian bivariate distribution. We assume that the ellipse is normalized so that the functions evaluate identicall for
major = minor.

Inputs:

• mjr: major axis (sigma not FWHM) of the Gaussian

• mnr: minor axis (sigma not FWHM) of the Gaussian

• pa: position angle (from +x to +y) of the Gaussian, radians

Returns:

• sx: standard deviation (not variance) of x var

• sy: standard deviation (not variance) of y var

• cxy: covariance (not correlation coefficient) of x and y

pwkit.ellipses.ellabc(mjr, mnr, pa)
Given a 2D Gaussian expressed as an ellipse (major, minor, pa), compute the nontrivial parameters for its
evaluation.

• mjr: major axis (sigma not FWHM) of the Gaussian

• mnr: minor axis (sigma not FWHM) of the Gaussian

• pa: position angle (from +x to +y) of the Gaussian, radians

Returns: (a, b, c), where z = exp (ax2 + bxy + cy2)

pwkit.ellipses.ellplot(mjr, mnr, pa)
Utility for debugging.

pwkit.ellipses.abcell(a, b, c)
Given the nontrivial parameters for evaluation a 2D Gaussian as a polynomial, compute the equivalent ellipse
parameters (major, minor, pa)

Inputs: (a, b, c), where z = exp (ax2 + bxy + cy2)

Returns:

• mjr: major axis (sigma not FWHM) of the Gaussian

• mnr: minor axis (sigma not FWHM) of the Gaussian

• pa: position angle (from +x to +y) of the Gaussian, radians

pwkit.ellipses.abcd2(x0, y0, a, b, c, x, y)
Given an 2D Gaussian expressed as the ABC polynomial coefficients, compute a “squared distance parameter”
such that

56 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

z = exp (-0.5 * d2)

Inputs:

• x0: position of Gaussian center on x axis

• y0: position of Gaussian center on y axis

• a: such that z = exp (ax2 + bxy + cy2)

• b: see above

• c: see above

• x: x coordinates of the locations for which to evaluate d2

• y: y coordinates of the locations for which to evaluate d2

Returns: d2, distance parameter defined as above.

This is pretty trivial.

3.7 Run the Fleischman & Kuznetsov (2010) synchrotron code
(pwkit.fk10)

This module helps you run the synchrotron code described in Fleischman & Kuznetsov (2010; hereafter FK10)
[DOI:10.1088/0004-637X/721/2/1127]. The code is provided as a precompiled binary module. It’s meant to be called
from IDL, but we won’t let that stop us!

The main interface to the code is the Calculator class. But before you can use it, you must install the code, as
described below.

3.7.1 Installing the code

To do anything useful with this module, you must first obtain the precompiled module. This isn’t the sort of module
you’d want to install into your system shared libraries, so for applications you’ll probably be storing it in some random
directory. Therefore, all actions in this module start by specifying the path to the library.

The module can be downloaded from as part of a Supplementary Data archive attached to the journal paper. At the
moment, the direct link is here, but that might change over time. The journal’s website for the paper should always
have a link.

The archive contains compiled versions of the code for Windows, 32-bit Linux, and 64-bit Linux. It is quite worrisome
that maybe one day these files will stop working, but that’s what we’ve got right now.

Anyway, you should download and unpack the archive and copy the desired file to wherever makes the most sense
for your software environment and application. On 64-bit Linux, the file name is libGS_Std_HomSrc_CEH.so.
64. Any variable named shlib_path that comes up in the API should be a path to this file. Note that relative paths
should include a directory component (e.g. ./libGS_Std_HomSrc_CEH.so.64); the ctypes module treats
bare filenames specially.

class pwkit.fk10.Calculator(shlib_path)
An interface to the FK10 synchrotron routines.

This class maintains state about the input parameters that can be passed to the routines, and can invoke them for
you.

Constructor arguments

shlib_path The path to the compiled FK10 code, as described in the module-level documentation.

3.7. Run the Fleischman & Kuznetsov (2010) synchrotron code (pwkit.fk10) 57

https://doi.org/10.1088/0004-637X/721/2/1127
http://iopscience.iop.org/0004-637X/721/2/1127/suppdata/apj351391_sourcecode.tar.gz
https://doi.org/10.1088/0004-637X/721/2/1127
https://docs.python.org/3/library/ctypes.html#module-ctypes

pwkit, Release 1.0.0

Newly-constructed objects are initialized with:

self.set_hybrid_parameters(12, 12)
self.set_ignore_q_terms(False)
self.set_trapezoidal_integration(15)

Setting parameters

set_bfield(B_G) Set the strength of the local magnetic field.
set_bfield_for_s0(s0) Set B to probe a certain harmonic number.
set_edist_powerlaw(emin_mev, emax_mev,
. . .)

Set the energy distribution function to a power law.

set_edist_powerlaw_gamma(gmin, gmax,
delta, . . .)

Set the energy distribution function to a power law in
the Lorentz factor

set_freqs(n, f_lo_ghz, f_hi_ghz) Set the frequency grid on which to perform the cal-
culations.

set_hybrid_parameters(s_C, s_WH[,
do_renorm])

Set the hybrid/renormalization control parameters.

set_ignore_q_terms(ignore_q_terms) Set whether “Q” terms are ignored.
set_obs_angle(theta_rad) Set the observer angle relative to the field.
set_one_freq(f_ghz) Set the code to calculate results at just one frequency.
set_padist_gaussian_loss_cone(boundary_rad,
. . .)

Set the pitch-angle distribution to a Gaussian loss
cone.

set_padist_isotropic() Set the pitch-angle distribution to be isotropic.
set_thermal_background(T_K, nth_cc) Set the properties of the background thermal plasma.
set_trapezoidal_integration(n) Set the code to use trapezoidal integration.

Running calculations

find_rt_coefficients([depth0]) Figure out emission and absorption coefficients for
the current parameters.

find_rt_coefficients_tot_intens([depth0])Figure out total-intensity emission and absorption
coefficients for the current parameters.

set_bfield(B_G)
Set the strength of the local magnetic field.

Call signature

B_G The magnetic field strength, in Gauss

Returns self for convenience in chaining.

set_bfield_for_s0(s0)
Set B to probe a certain harmonic number.

Call signature

s0 The harmonic number to probe at the lowest frequency

Returns self for convenience in chaining.

This just proceeds from the relation nu = s nu_c = s e B / 2 pi m_e c. Since s and nu scale
with each other, if multiple frequencies are being probed, the harmonic numbers being probed will scale

58 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

in the same way.

set_edist_powerlaw(emin_mev, emax_mev, delta, ne_cc)
Set the energy distribution function to a power law.

Call signature

emin_mev The minimum energy of the distribution, in MeV

emax_mev The maximum energy of the distribution, in MeV

delta The power-law index of the distribution

ne_cc The number density of energetic electrons, in cm^-3.

Returns self for convenience in chaining.

set_edist_powerlaw_gamma(gmin, gmax, delta, ne_cc)
Set the energy distribution function to a power law in the Lorentz factor

Call signature

gmin The minimum Lorentz factor of the distribution

gmax The maximum Lorentz factor of the distribution

delta The power-law index of the distribution

ne_cc The number density of energetic electrons, in cm^-3.

Returns self for convenience in chaining.

set_freqs(n, f_lo_ghz, f_hi_ghz)
Set the frequency grid on which to perform the calculations.

Call signature

n The number of frequency points to sample.

f_lo_ghz The lowest frequency to sample, in GHz.

f_hi_ghz The highest frequency to sample, in GHz.

Returns self for convenience in chaining.

set_hybrid_parameters(s_C, s_WH, do_renorm=True)
Set the hybrid/renormalization control parameters.

Call signature

s_C The harmonic number above which the continuous approximation is used (with special behavior; see
below).

s_WH The harmonic number above which the Wild-Hill BEssel function approximations are used.

do_renorm (default True) Whether to do any renormalization at all.

Returns self for convenience in chaining.

FK10 uses frequency parameters f^C_cr and f^WH_cr to control some of its optimizations. This func-
tion sets these parameters as multiples of the electron cyclotron frequency (f_Be in FK10 notation): e.g.,
f^C_cr = s_C * f_Be.

At frequencies above f^C_cr, the “continuum” approximation is introduced, replacing the “exact” sum
with an integral. At frequencies above f^WH_cr, the Wild-Hild approximations to the Bessel functions are
used. In both cases, the activation of the optimizations can result in normalization shifts in the calculations.
“Renormalization” computes these shifts (by doing both kinds of calculations at the transition frequencies)

3.7. Run the Fleischman & Kuznetsov (2010) synchrotron code (pwkit.fk10) 59

pwkit, Release 1.0.0

and attempts to correct them. (Some of the FK10 documentation seems to refer to renormalization as “R-
optimization”.)

If f^C_cr is below the lowest frequency integrated, all calculations will be done in continuum mode. In this
case, the sign of s_C sets whether Wild-Hill renormalization is applied. If s_C is negative and f^WH_cr is
above the lowest frequency integration, renormalization is done. Otherwise, it is not.

The documentation regarding f^WH_cr is confusing. It states that f^WH_cr only matters if (1) s_WH <
s_C or (2) s_C < 0 and f^WH_cr > f_0. It is not obvious to me why s_WH > s_C should only matter if
s_C < 0, but that’s what’s implied.

In most examples in FK10, both of these parameters are set to 12.

set_ignore_q_terms(ignore_q_terms)
Set whether “Q” terms are ignored.

Call signature

ignore_q_terms If true, ignore “Q” terms in the integrations.

Returns self for convenience in chaining.

See Section 4.3 of FK10 and OnlineII.pdf in the Supplementary Data for a precise explanation. The
default is to not ignore the terms.

set_obs_angle(theta_rad)
Set the observer angle relative to the field.

Call signature

theta_rad The angle between the ray path and the local magnetic field, in radians.

Returns self for convenience in chaining.

set_one_freq(f_ghz)
Set the code to calculate results at just one frequency.

Call signature

f_ghz The frequency to sample, in GHz.

Returns self for convenience in chaining.

set_padist_gaussian_loss_cone(boundary_rad, expwidth)
Set the pitch-angle distribution to a Gaussian loss cone.

Call signature

boundary_rad The angle inside which there are no losses, in radians.

expwidth The characteristic width of the Gaussian loss profile in direction-cosine units.

Returns self for convenience in chaining.

See OnlineI.pdf in the Supplementary Data for a precise definition. (And note the distinction between
𝛼_c and 𝜇_c since not everything is direction cosines.)

set_padist_isotropic()
Set the pitch-angle distribution to be isotropic.

Returns self for convenience in chaining.

set_thermal_background(T_K, nth_cc)
Set the properties of the background thermal plasma.

Call signature

60 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

T_K The temperature of the background plasma, in Kelvin.

nth_cc The number density of thermal electrons, in cm^-3.

Returns self for convenience in chaining.

Note that the parameters set here are the same as the ones that describe the thermal electron distribution,
if you choose one of the electron energy distributions that explicitly models a thermal component (“thm”,
“tnt”, “tnp”, “tng”, “kappa” in the code’s terminology). For the power-law-y electron distributions, these
parameters are used to calculate dispersion parameters (e.g. refractive indices) and a free-free contribution,
but their synchrotron contribution is ignored.

set_trapezoidal_integration(n)
Set the code to use trapezoidal integration.

Call signature

n Use this many nodes

Returns self for convenience in chaining.

find_rt_coefficients(depth0=None)
Figure out emission and absorption coefficients for the current parameters.

Argument

depth0 (default None) A first guess to use for a good integration depth, in cm. If None, the most recent
value is used.

Return value

A tuple (j_O, alpha_O, j_X, alpha_X), where:

j_O The O-mode emission coefficient, in erg/s/cm^3/Hz/sr.

alpha_O The O-mode absorption coefficient, in cm^-1.

j_X The X-mode emission coefficient, in erg/s/cm^3/Hz/sr.

alpha_X The X-mode absorption coefficient, in cm^-1.

The main outputs of the FK10 code are intensities and “damping factors” describing a radiative transfer
integration of the emission from a homogeneous source. But there are times when we’d rather just know
what the actual emission and absorption coefficients are. These can be backed out from the FK10 outputs,
but only if the “damping factor” takes on an intermediate value not extremely close to either 0 or 1.
Unfortunately, there’s no way for us to know a priori what choice of the “depth” parameter will yield a
nice value for the damping factor. This routine automatically figures one out, by repeatedly running the
calculation.

To keep things simple, this routine requires that you only be solving for coefficients for one frequency at a
time (e.g., set_one_freq()).

find_rt_coefficients_tot_intens(depth0=None)
Figure out total-intensity emission and absorption coefficients for the current parameters.

Argument

depth0 (default None) A first guess to use for a good integration depth, in cm. If None, the most recent
value is used.

Return value

A tuple (j_I, alpha_I), where:

j_I The total intensity emission coefficient, in erg/s/cm^3/Hz/sr.

3.7. Run the Fleischman & Kuznetsov (2010) synchrotron code (pwkit.fk10) 61

pwkit, Release 1.0.0

alpha_I The total intensity absorption coefficient, in cm^-1.

See find_rt_coefficients() for an explanation how this routine works. This version merely
postprocesses the results from that method to convert the coefficients to refer to total intensity.

3.8 Modeling sources in images (pwkit.immodel)

pwkit.immodel - Analytical modeling of astronomical images.

This is derived from copl/pylib/bgfit.py and copl/bin/imsrcdebug. I keep on wanting this code so I should put it
somewhere more generic. Such as here. Also, given the history, there are a lot more bells and whistles in the code than
the currently exposed UI really needs.

3.9 Bayesian confidence intervals for count rates (pwkit.kbn_conf)

pwkit.kbn_conf - calculate Poisson-like confidence intervals assuming a background

This module implements the Bayesian confidence intervals for Poisson processes in a background using the approach
described in Kraft, Burrows, & Nousek (1991). That paper provides tables of values; this module can calculate
intervals for arbitrary inputs. Requires scipy.

This implementation almost directly transcribes the equations. We do, however, work in log-gamma space to try to
avoid overflows with large values of N or B.

Functions:

kbn_conf - Compute a single confidence limit. vec_kbn_conf - Vectorized version of kbn_conf.

TODO: tests!

pwkit.kbn_conf.kbn_conf(N, B, CL)
Given a (integer) number of observed Poisson events N and a (real) expected number of background events B
and a confidence limit CL (between 0 and 1), return the confidence interval on the source event rate.

Returns: (Smin, Smax)

This interval is calculated using the Bayesian formalism of Kraft, Burrows, & Nousek (1991), which assumes
no uncertainty in B and returns the smallest possible interval that satisfies the above properties.

Example: in a certain time interval, 3 events were recorded. Based on external knowledge, it is expected that on
average 0.5 background events will be recorded in the same interval. The 95% confidence interval on the source
event rate is

>>> kbn_conf.kbn_conf (3, 0.5, 0.95)
<<< (0.22156, 7.40188)

which agrees with the entry in Table 2 of KBN91.

Reference info: 1991ApJ. . . 374..344K, doi:10.1086/170124

3.10 Nonlinear least-squares minimization with Levenberg-
Marquardt (pwkit.lmmin)

pwkit.lmmin - Pythonic, Numpy-based Levenberg-Marquardt least-squares minimizer

62 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

Basic usage:

from pwkit.lmmin import Problem, ResidualProblem

def yfunc(params, vals):
vals[:] = {stuff with params}

def jfunc(params, jac):
jac[i,j] = {deriv of val[j] w.r.t. params[i]}
i.e. jac[i] = {deriv of val wrt params[i]}

p = Problem(npar, nout, yfunc, jfunc=None)
solution = p.solve(guess)

p2 = Problem()
p2.set_npar(npar) # enables configuration of parameter meta-info
p2.set_func(nout, yfunc, jfunc)

Main Solution properties:

prob - The Problem. status - Set of strings; presence of ‘ftol’, ‘gtol’, or ‘xtol’ suggests success. params
- Final parameter values. perror - 1𝜎 uncertainties on params. covar - Covariance matrix of parameters.
fnorm - Final norm of function output. fvec - Final vector of function outputs. fjac - Final Jacobian matrix
of d(fvec)/d(params).

Automatic least-squares model-fitting (subtracts “observed” Y values and multiplies by inverse errors):

def yrfunc(params, modelyvalues): modelyvalues[:] = {stuff with params}

def yjfunc(params, modelyjac): jac[i,j] = {deriv of modelyvalue[j] w.r.t. params[i]}

p.set_residual_func(yobs, errinv, yrfunc, jrfunc, reckless=False) p = ResidualProblem(npar, yobs, errinv,
yrfunc, jrfunc=None, reckless=False)

Parameter meta-information:

p.p_value(paramindex, value, fixed=False) p.p_limit(paramindex, lower=-inf, upper=+inf)
p.p_step(paramindex, stepsize, maxstep=info, isrel=False) p.p_side(paramindex, sidedness) # one
of ‘auto’, ‘pos’, ‘neg’, ‘two’ p.p_tie(paramindex, tiefunc) # pval = tiefunc(params)

solve() status codes:

Solution.status is a set of strings. The presence of a string in the set means that the specified condition was active
when the iteration terminated. Multiple conditions may contribute to ending the iteration. The algorithm likely did not
converge correctly if none of ‘ftol’, ‘xtol’, or ‘gtol’ are in status upon termination.

‘ftol’ (MINPACK/MPFIT equiv: 1, 3) “Termination occurs when both the actual and predicted relative reductions
in the sum of squares are at most FTOL. Therefore, FTOL measures the relative error desired in the sum of
squares.”

‘xtol’ (MINPACK/MPFIT equiv: 2, 3) “Termination occurs when the relative error between two consecutive iter-
ates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution.”

‘gtol’ (MINPACK/MPFIT equiv: 4) “Termination occurs when the cosine of the angle between fvec and any column
of the jacobian is at most GTOL in absolute value. Therefore, GTOL measures the orthogonality desired between
the function vector and the columns of the jacobian.”

‘maxiter’ (MINPACK/MPFIT equiv: 5) Number of iterations exceeds maxiter.

‘feps’ (MINPACK/MPFIT equiv: 6) “ftol is too small. no further reduction in the sum of squares is possible.”

‘xeps’ (MINPACK/MPFIT equiv: 7) “xtol is too small. no further improvement in the approximate solution x is
possible.”

3.10. Nonlinear least-squares minimization with Levenberg-Marquardt (pwkit.lmmin) 63

pwkit, Release 1.0.0

‘geps’ (MINPACK/MPFIT equiv: 8) “gtol is too small. fvec is orthogonal to the columns of the jacobian to machine
precision.”

(This docstring contains only usage information. For important information regarding provenance, license, and aca-
demic references, see comments in the module source code.)

class pwkit.lmmin.Problem(npar=None, nout=None, yfunc=None, jfunc=None, solclass=<class
’pwkit.lmmin.Solution’>)

A Levenberg-Marquardt problem to be solved. Attributes:

damp Tanh damping factor of extreme function values.

debug_calls If true, information about function calls is printed.

debug_jac If true, information about jacobian calls is printed.

diag Scale factors for parameter derivatives, used to condition the problem.

epsilon The floating-point epsilon value, used to determine step sizes in automatic Jacobian computation.

factor The step bound is factor times the initial value times diag.

ftol The relative error desired in the sum of squares.

gtol The orthogonality desired between the function vector and the columns of the Jacobian.

maxiter The maximum number of iterations allowed.

normfunc A function to compute the norm of a vector.

solclass A factory for Solution instances.

xtol The relative error desired in the approximate solution.

Methods:

copy Duplicate this Problem.

get_ndof Get the number of degrees of freedom in the problem.

get_nfree Get the number of free parameters (fixed/tied/etc pars are not free).

p_value Set the initial or fixed value of a parameter.

p_limit Set limits on parameter values.

p_step Set the stepsize for a parameter.

p_side Set the sidedness with which auto-derivatives are computed for a par.

p_tie Set a parameter to be a function of other parameters.

set_func Set the function to be optimized.

set_npar Set the number of parameters; allows p_* to be called.

set_residual_func Set the function to a standard model-fitting style.

solve Run the algorithm.

solve_scipy Run the algorithm using the Scipy implementation (for testing).

p_side(idx, sidedness)
Acceptable values for sidedness are “auto”, “pos”, “neg”, and “two”.

class pwkit.lmmin.Solution(prob)
A parameter solution from the Levenberg-Marquard algorithm. Attributes:

ndof - The number of degrees of freedom in the problem. prob - The Problem. status - A set of strings indicating
which stop condition(s) arose. niter - The number of iterations needed to obtain the solution. perror - The 1𝜎

64 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

errors on the final parameters. params - The final best-fit parameters. covar - The covariance of the function
parameters. fnorm - The final function norm. fvec - The final function outputs. fjac - The final Jacobian. nfev
- The number of function evaluations needed to obtain the solution. njev - The number of Jacobian evaluations
needed to obtain the solution.

The presence of ‘ftol’, ‘gtol’, or ‘xtol’ in status suggests success.

3.11 Fitting generic models with least-squares minimization (pwkit.
lsqmdl)

Model data with least-squares fitting

This module provides tools for fitting models to data using least-squares optimization.

There are four basic approaches all offering a common programming interface:

• Generic Nonlinear Modeling

• One-dimensional Polynomial Modeling

• Modeling of a Single Scale Factor

• Modeling With Pluggable Components

ModelBase(data[, invsigma]) An abstract base class holding data and a model for
least-squares fitting.

Parameter(owner, index) Information about a parameter in a least-squares model.

class pwkit.lsqmdl.ModelBase(data, invsigma=None)
An abstract base class holding data and a model for least-squares fitting.

The models implemented in this module all derive from this class and so inherit the attributes and methods
described below.

A Parameter data structure may be obtained by indexing this object with either the parameter’s numerical
index or its name. I.e.:

m = Model(...).solve(...)
p = m['slope']
print(p.name, p.value, p.uncert, p.uval)

chisq = None
After fitting, the 𝜒2 of the fit.

covar = None
After fitting, the variance-covariance matrix representing the parameter uncertainties.

data = None
The data to be modeled; an n-dimensional Numpy array.

invsigma = None
Data weights: 1/𝜎 for each data point.

make_frozen_func(params)
Return a data-generating model function frozen at the specified parameters.

As with the mfunc attribute, the resulting function may or may not take arguments depending on the
particular kind of model being evaluated.

3.11. Fitting generic models with least-squares minimization (pwkit.lsqmdl) 65

pwkit, Release 1.0.0

mdata = None
After fitting, the modeled data at the best parameters.

mfunc = None
After fitting, a callable function evaluating the model fixed at best params.

The resulting function may or may not take arguments depending on the particular kind of model being
evaluated.

params = None
After fitting, a Numpy ndarray of solved model parameters.

plot(modelx, dlines=False, xmin=None, xmax=None, ymin=None, ymax=None, **kwargs)
Plot the data and model (requires omega).

This assumes that data is 1D and that mfunc takes one argument that should be treated as the X variable.

pnames = None
A list of textual names for the parameters.

print_soln()
Print information about the model solution.

puncerts = None
After fitting, a Numpy ndarray of 1𝜎 uncertainties on the model parameters.

rchisq = None
After fitting, the reduced 𝜒2 of the fit, or None if there are no degrees of freedom.

resids = None
After fitting, the residuals: resids = data - mdata.

set_data(data, invsigma=None)
Set the data to be modeled.

Returns self.

show_corr()
Show the parameter correlation matrix with pwkit.ndshow_gtk3.

show_cov()
Show the parameter covariance matrix with pwkit.ndshow_gtk3.

class pwkit.lsqmdl.Parameter(owner, index)
Information about a parameter in a least-squares model.

These data may only be obtained after solving least-squares problem. These objects reference information from
their parent objects, so changing the parent will alter the apparent contents of these objects.

index
The parameter’s index in the Model’s arrays.

name
The parameter’s name.

uncert
The uncertainty in value.

uval
Accesses value and uncert as a pwkit.msmt.Uval.

value
The parameter’s value.

66 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

3.11.1 Generic Nonlinear Modeling

Model(simple_func, data[, invsigma, args]) Models data with a generic nonlinear optimizer
Parameter(owner, index) Information about a parameter in a least-squares model.

class pwkit.lsqmdl.Model(simple_func, data, invsigma=None, args=())
Models data with a generic nonlinear optimizer

Basic usage is:

def func(p1, p2, x):
simulated_data = p1 * x + p2
return simulated_data

x = [1, 2, 3]
data = [10, 14, 15.8]
mdl = Model(func, data, args=(x,)).solve(guess).print_soln()

The Model constructor can take an optional argument invsigma after data; it specifies inverse sigmas, not
inverse variances (the usual statistical weights), for the data points. Since most applications deal in sigmas, take
care to write:

m = Model(func, data, 1. / uncerts) # right!

not:

m = Model(func, data, uncerts) # WRONG

If you have zero uncertainty on a measurement, you must wind a way to express that constraint without including
that measurement as part of the data vector.

lm_prob = None
A pwkit.lmmin.Problem instance describing the problem to be solved.

After setting up the data-generating function, you can access this item to tune the solver.

make_frozen_func(params)
Returns a model function frozen to the specified parameter values.

Any remaining arguments are left free and must be provided when the function is called.

For this model, the returned function is the application of functools.partial() to the func prop-
erty of this object.

set_func(func, pnames, args=())
Set the model function to use an efficient but tedious calling convention.

The function should obey the following convention:

def func(param_vec, *args):
modeled_data = { do something using param_vec }
return modeled_data

This function creates the pwkit.lmmin.Problem so that the caller can futz with it before calling
solve(), if so desired.

Returns self.

3.11. Fitting generic models with least-squares minimization (pwkit.lsqmdl) 67

https://docs.python.org/3/library/functools.html#functools.partial

pwkit, Release 1.0.0

set_simple_func(func, args=())
Set the model function to use a simple but somewhat inefficient calling convention.

The function should obey the following convention:

def func(param0, param1, ..., paramN, *args):
modeled_data = { do something using the parameters }
return modeled_data

Returns self.

solve(guess)
Solve for the parameters, using an initial guess.

This uses the Levenberg-Marquardt optimizer described in pwkit.lmmin.

Returns self.

3.11.2 One-dimensional Polynomial Modeling

class pwkit.lsqmdl.PolynomialModel(maxexponent, x, data, invsigma=None)
Least-squares polynomial fit.

Because this is a very specialized kind of problem, we don’t need an initial guess to solve, and we can use fast
built-in numerical routines.

The output parameters are named “a0”, “a1”, . . . and are stored in that order in PolynomialModel.params[]. We
have y = sum(x**i * a[i]), so “a2” = “params[2]” is the quadratic term, etc.

This model does not give uncertainties on the derived coefficients. The as_nonlinear() method can be use to get
a Model instance with uncertainties.

Methods:

as_nonlinear - Return a (lmmin-based) Model equivalent to self.

as_nonlinear(params=None)
Return a Model equivalent to this object. The nonlinear solver is less efficient, but lets you freeze parame-
ters, compute uncertainties, etc.

If the params argument is provided, solve() will be called on the returned object with those parameters. If
it is None and this object has parameters in self.params, those will be use. Otherwise, solve() will not be
called on the returned object.

make_frozen_func(params)
Return a data-generating model function frozen at the specified parameters.

As with the mfunc attribute, the resulting function may or may not take arguments depending on the
particular kind of model being evaluated.

3.11.3 Modeling of a Single Scale Factor

class pwkit.lsqmdl.ScaleModel(x, data, invsigma=None)
Solve data = m * x for m.

make_frozen_func(params)
Return a data-generating model function frozen at the specified parameters.

As with the mfunc attribute, the resulting function may or may not take arguments depending on the
particular kind of model being evaluated.

68 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

3.11.4 Modeling With Pluggable Components

ComposedModel(component, data[, invsigma])
ModelComponent([name])
AddConstantComponent([name])
AddValuesComponent(nvals[, name]) XXX terminology between this and AddConstant is

mushy.
AddPolynomialComponent(maxexponent, x[,
name])
SeriesComponent([components, name]) Apply a set of subcomponents in series, isolating each

from the other.
MatMultComponent(k[, name]) Given a component yielding k**2 data points and k ad-

ditional components, each yielding n data points.
ScaleComponent([subcomp, name])

class pwkit.lsqmdl.ComposedModel(component, data, invsigma=None)

debug_derivative(guess)
returns (explicit, auto)

make_frozen_func()
Return a data-generating model function frozen at the specified parameters.

As with the mfunc attribute, the resulting function may or may not take arguments depending on the
particular kind of model being evaluated.

class pwkit.lsqmdl.ModelComponent(name=None)

deriv(pars, jac)
Compute the Jacobian. jac[i] is d‘mdata‘/d‘pars[i]‘.

extract(pars, perr, cov)
Extract fit results into the object for ease of inspection.

finalize_setup()
If the component has subcomponents, this should set their name, setguess, setvalue, and setlimit properties.
It should also set npar (on self) to the final value.

model(pars, mdata)
Modify mdata based on pars.

prep_params()
This should make any necessary calls to setvalue or setlimit, though in straightforward cases it should just
be up to the user to do this. If the component has subcomponents, their prep_params functions should be
called.

class pwkit.lsqmdl.AddConstantComponent(name=None)

deriv(pars, jac)
Compute the Jacobian. jac[i] is d‘mdata‘/d‘pars[i]‘.

extract(pars, perr, cov)
Extract fit results into the object for ease of inspection.

model(pars, mdata)
Modify mdata based on pars.

3.11. Fitting generic models with least-squares minimization (pwkit.lsqmdl) 69

pwkit, Release 1.0.0

class pwkit.lsqmdl.AddValuesComponent(nvals, name=None)
XXX terminology between this and AddConstant is mushy.

deriv(pars, jac)
Compute the Jacobian. jac[i] is d‘mdata‘/d‘pars[i]‘.

extract(pars, perr, cov)
Extract fit results into the object for ease of inspection.

model(pars, mdata)
Modify mdata based on pars.

class pwkit.lsqmdl.AddPolynomialComponent(maxexponent, x, name=None)

deriv(pars, jac)
Compute the Jacobian. jac[i] is d‘mdata‘/d‘pars[i]‘.

extract(pars, perr, cov)
Extract fit results into the object for ease of inspection.

model(pars, mdata)
Modify mdata based on pars.

class pwkit.lsqmdl.SeriesComponent(components=(), name=None)
Apply a set of subcomponents in series, isolating each from the other. This is only valid if every subcomponent
except the first is additive – otherwise, the Jacobian won’t be right.

add(component)
This helps, but direct manipulation of self.components should be supported.

deriv(pars, jac)
Compute the Jacobian. jac[i] is d‘mdata‘/d‘pars[i]‘.

extract(pars, perr, cov)
Extract fit results into the object for ease of inspection.

finalize_setup()
If the component has subcomponents, this should set their name, setguess, setvalue, and setlimit properties.
It should also set npar (on self) to the final value.

model(pars, mdata)
Modify mdata based on pars.

prep_params()
This should make any necessary calls to setvalue or setlimit, though in straightforward cases it should just
be up to the user to do this. If the component has subcomponents, their prep_params functions should be
called.

class pwkit.lsqmdl.MatMultComponent(k, name=None)
Given a component yielding k**2 data points and k additional components, each yielding n data points. The
result is [A]×[B], where A is the square matrix formed from the first component’s output, and B is the (k, n)
matrix of stacked output from the final k components.

Parameters are ordered in same way as the components named above.

deriv(pars, jac)
Compute the Jacobian. jac[i] is d‘mdata‘/d‘pars[i]‘.

extract(pars, perr, cov)
Extract fit results into the object for ease of inspection.

70 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

finalize_setup()
If the component has subcomponents, this should set their name, setguess, setvalue, and setlimit properties.
It should also set npar (on self) to the final value.

model(pars, mdata)
Modify mdata based on pars.

prep_params()
This should make any necessary calls to setvalue or setlimit, though in straightforward cases it should just
be up to the user to do this. If the component has subcomponents, their prep_params functions should be
called.

class pwkit.lsqmdl.ScaleComponent(subcomp=None, name=None)

deriv(pars, jac)
Compute the Jacobian. jac[i] is d‘mdata‘/d‘pars[i]‘.

extract(pars, perr, cov)
Extract fit results into the object for ease of inspection.

finalize_setup()
If the component has subcomponents, this should set their name, setguess, setvalue, and setlimit properties.
It should also set npar (on self) to the final value.

model(pars, mdata)
Modify mdata based on pars.

prep_params()
This should make any necessary calls to setvalue or setlimit, though in straightforward cases it should just
be up to the user to do this. If the component has subcomponents, their prep_params functions should be
called.

3.12 Math with uncertain and censored measurements (pwkit.msmt)

pwkit.msmt - Working with uncertain measurements.

Classes:

Uval - An empirical uncertain value represented by numerical samples. LimitError - Raised on illegal operations on
upper/lower limits. Lval - Container for either precise values or upper/lower limits. Textual - A measurement recorded
in textual form.

Generic unary functions on measurements:

absolute - abs(x) arccos - As named. arcsin - As named. arctan - As named. cos - As named. errinfo - Get (limtype,
repval, plus_1_sigma, minus_1_sigma) expm1 - exp(x) - 1 exp - As named. fmtinfo - Get (typetag, text, is_imprecise)
for textual round-tripping. isfinite - True if the value is well-defined and finite. liminfo - Get (limtype, repval) limtype
- -1 if the datum is an upper limit; 1 if lower; 0 otherwise. log10 - As named. log1p - log(1+x) log2 - As named.
log - As named. negative - -x reciprocal - 1/x repval - Get a “representative” value if x (in case it is uncertain). sin
- As named. sqrt - As named. square - x**2 tan - As named. unwrap - Get a version of x on which algebra can be
performed.

Generic binary mathematical-ish functions:

add - x + y divide - x / y, never with floor-integer division floor_divide- x // y multiply - x * y power - x ** y subtract
- x - y true_divide - x / y, never with floor-integer division typealign - Return (x*, y*) cast to same algebra-friendly
type: float, Uval, or Lval.

Miscellaneous functions:

3.12. Math with uncertain and censored measurements (pwkit.msmt) 71

pwkit, Release 1.0.0

is_measurement - Check whether an object is numerical find_gamma_params - Compute reasonable Γ distribu-
tion parameters given mode/stddev. pk_scoreatpercentile - Simplified version of scipy.stats.scoreatpercentile. sam-
ple_double_norm - Sample from a quasi-normal distribution with asymmetric variances. sample_gamma - Sample
from a Γ distribution with 𝛼/𝛽 parametrization.

Variables:

lval_unary_math - Dict of unary math functions operating on Lvals. parsers - Dict of type tag to parsing functions.
scalar_unary_math - Dict of unary math functions operating on scalars. textual_unary_math - Dict of unary math
functions operating on Textuals. UQUANT_UNCERT - Scale of uncertainty assumed for in cases where it’s un-
quantified. uval_default_repval_method - Default method for computing Uval representative values. uval_dtype -
The Numpy dtype of Uval data (often ignored!) uval_nsamples - Number of samples used when constructing Uvals
uval_unary_math - Dict of unary math functions operating on Uvals.

exception pwkit.msmt.LimitError

class pwkit.msmt.Lval(kind, value)
A container for either precise values or upper/lower limits. Constructed as Lval(kind, value), where kind
is "exact", "uncertain", "toinf", "tozero", "pastzero", or "undef". Most easily constructed
via Textual.parse(). Can also be constructed with Lval.from_other().

Supported operations are unicode() str() repr() -(neg) abs() + - * / ** += -= *= /
= **=.

class pwkit.msmt.Textual(tkind, dkind, data)
A measurement recorded in textual form.

Textual.from_exact(text, tkind=’none’) - text is passed to float() Textual.parse(text, tkind=’none’) - text as de-
scribed below.

Transformation kinds are ‘none’, ‘log10’, or ‘positive’. Expressions for values take the form ‘1.234’, ‘<2’, ‘>3’,
‘~7’, ‘6to8’, ‘7pm0.1’, or ‘12p1m0.3’.

Methods:

unparse() - Return parsed text (but not tkind!) unwrap() - Express as float/Uval/Lval as appropriate. rep-
val(limitsok=False) - Get single scalar “representative” value. limtype() - -1 if upper limit; +1 if lower; 0
otherwise.

Supported operations: unicode() str() repr() [latexification] -(neg) abs() + - * / **

limtype()
Return -1 if this value is an upper limit, 1 if it is a lower limit, 0 otherwise.

repval(limitsok=False)
Get a best-effort representative value as a float. This can be DANGEROUS because it discards limit
information, which is rarely wise.

class pwkit.msmt.Uval(data)
An empirical uncertain value, represented by samples.

Constructors are:

• Uval.from_other()

• Uval.from_fixed()

• Uval.from_norm()

• Uval.from_unif()

• Uval.from_double_norm()

• Uval.from_gamma()

72 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

• Uval.from_pcount()

Key methods are:

• repvals()

• text_pieces()

• format()

• debug_distribution()

Supported operations are: unicode() str() repr() [latexification] + -(sub) * // /
% ** += -= *= //= %= /= **= -(neg) ~ abs()

static from_pcount(nevents)
We assume a Poisson process. nevents is the number of events in some interval. The distribution of values
is the distribution of the Poisson rate parameter given this observed number of events, where the “rate”
is in units of events per interval of the same duration. The max-likelihood value is nevents, but the mean
value is nevents + 1. The gamma distribution is obtained by assuming an improper, uniform prior for the
rate between 0 and infinity.

repvals(method)
Compute representative statistical values for this Uval. method may be either ‘pct’ or ‘gauss’.

Returns (best, plus_one_sigma, minus_one_sigma), where best is the “best” value in some sense, and the
others correspond to values at the ~84 and 16 percentile limits, respectively. Because of the sampled nature
of the Uval system, there is no single method to compute these numbers.

The “pct” method returns the 50th, 15.866th, and 84.134th percentile values.

The “gauss” method computes the mean 𝜇 and standard deviation 𝜎 of the samples and returns [𝜇, 𝜇+𝜎,
𝜇-𝜎].

text_pieces(method, uplaces=2, use_exponent=True)
Return (main, dhigh, dlow, sharedexponent), all as strings. The delta terms do not have sign indicators.
Any item except the first may be None.

method is passed to Uval.repvals() to compute representative statistical limits.

pwkit.msmt.errinfo(msmt)
Return (limtype, repval, errval1, errval2). Like m_liminfo, but also provides error bar information for values
that have it.

pwkit.msmt.fmtinfo(value)
Returns (typetag, text, is_imprecise). Unlike other functions that operate on measurements, this also operates
on bools, ints, and strings.

pwkit.msmt.liminfo(msmt)
Return (limtype, repval). limtype is -1 for upper limits, 1 for lower limits, and 0 otherwise; repval is a best-effort
representative scalar value for this measurement.

pwkit.msmt.limtype(msmt)
Return -1 if this value is some kind of upper limit, 1 if this value is some kind of lower limit, 0 otherwise.

pwkit.msmt.repval(msmt, limitsok=False)
Get a best-effort representative value as a float. This is DANGEROUS because it discards limit information,
which is rarely wise. m_liminfo() or m_unwrap() are recommended instead.

pwkit.msmt.unwrap(msmt)
Convert the value into the most basic representation that we can do math on: float if possible, then Uval, then
Lval.

3.12. Math with uncertain and censored measurements (pwkit.msmt) 73

pwkit, Release 1.0.0

pwkit.msmt.find_gamma_params(mode, std)
Given a modal value and a standard deviation, compute corresponding parameters for the gamma distribution.

Intended to be used to replace normal distributions when the value must be positive and the uncertainty is
comparable to the best value. Conversion equations determined from the relations given in the sample_gamma()
docs.

pwkit.msmt.sample_double_norm(mean, std_upper, std_lower, size)
Note that this function requires Scipy.

pwkit.msmt.sample_gamma(alpha, beta, size)
This is mostly about recording the conversion between Numpy/Scipy conventions and Wikipedia conventions.
Some equations:

mean = alpha / beta variance = alpha / beta**2 mode = (alpha - 1) / beta [if alpha > 1; otherwise undefined]
skewness = 2 / sqrt(alpha)

pwkit.msmt.UQUANT_UNCERT = 0.2
Some values are known to be uncertain, but their uncertainties have not been quantified. This is lame but it
happens. In this case, assume a 20% uncertainty.

We could infer uncertainties from the number of written digits: i.e., assuming “1.2” is uncertain by 0.05 or so,
while “1.2000” is uncertain by 0.00005 or so. But there are many cases in astronomy where people just list
values that are 20% uncertain and give them to multiple decimal places. I’d rather be conservative with these
values than overly optimistic.

Code to do the appropriate parsing is in the Python uncertainties package, in its
__init__.py:parse_error_in_parentheses().

pwkit.msmt.uval_dtype
alias of numpy.float64

3.13 Period-finding with Phase Dispersion Minimization (pwkit.pdm)

pwkit.pdm - period-finding with phase dispersion minimization

As defined in Stellingwerf (1978ApJ. . . 224..953S). See the update in Schwarzenberg-Czerny (1997ApJ. . . 489..941S),
however, which corrects the significance test formally; Linnell Nemec & Nemec (1985AJ.90.2317L) provide a
Monte Carlo approach. Also, Stellingwerf has developed “PDM2” which attempts to improve a few aspects; see

• Stellingwerf’s page

• The Wikipedia article

class pwkit.pdm.PDMResult(thetas, imin, pmin, mc_tmins, mc_pvalue, mc_pmins, mc_puncert)

imin
Alias for field number 1

mc_pmins
Alias for field number 5

mc_puncert
Alias for field number 6

mc_pvalue
Alias for field number 4

mc_tmins
Alias for field number 3

74 Chapter 3. Scientific Algorithms

http://www.stellingwerf.com/rfs-bin/index.cgi?action=PageView&id=29
http://en.wikipedia.org/wiki/Phase_dispersion_minimization

pwkit, Release 1.0.0

pmin
Alias for field number 2

thetas
Alias for field number 0

pwkit.pdm.pdm(t, x, u, periods, nbin, nshift=8, nsmc=256, numc=256, weights=False, parallel=True)
Perform phase dispersion minimization.

t [1D array] time coordinate

x [1D array, same size as t] observed value

u [1D array, same size as t] uncertainty on observed value; same units as x

periods [1D array] set of candidate periods to sample; same units as t

nbin [int] number of phase bins to construct

nshift [int=8] number of shifted binnings to sample to combact statistical flukes

nsmc [int=256] number of Monte Carlo shufflings to compute, to evaluate the significance of the minimal theta
value.

numc [int=256] number of Monte Carlo added-noise datasets to compute, to evaluate the uncertainty in the
location of the minimal theta value.

weights [bool=False] if True, ‘u’ is actually weights, not uncertainties. Usually weights = u**-2.

parallel [default True] Controls parallelization of the algorithm. Default uses all available cores. See
pwkit.parallel.make_parallel_helper.

Returns named tuple of:

thetas [1D array] values of theta statistic, same size as periods

imin index of smallest (best) value in thetas

pmin the period value with the smallest (best) theta

mc_tmins 1D array of size nsmc with Monte Carlo samplings of minimal theta values for shufflings of the data;
assesses significance of the peak

mc_pvalue probability (between 0 and 1) of obtaining the best theta value in a randomly-shuffled dataset

mc_pmins 1D array of size numc with Monte Carlo samplings of best period values for noise-added data;
assesses uncertainty of pmin

mc_puncert standard deviation of mc_pmins; approximate uncertainty on pmin.

We don’t do anything clever, so runtime scales at least as t.size * periods.size * nbin *
nshift * (nsmc + numc + 1).

3.14 Loading the outputs of PHOENIX atmospheric models (pwkit.
phoenix)

pwkit.phoenix - Working with Phoenix atmospheric models.

Functions:

• load_spectrum - Load a model spectrum into a Pandas DataFrame.

3.14. Loading the outputs of PHOENIX atmospheric models (pwkit.phoenix) 75

pwkit, Release 1.0.0

Requires Pandas.

Individual data files for the BT-Settl models are about 120 MB, and there are a million variations, so we do not
consider bundling them with pwkit. Therefore, we can safely expect that the model will be accessible as a path on the
filesystem.

Current BT-Settl models may be downloaded from a SPECTRA directory within the BT-Settl download site (see the
README). E.g.:

https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011bc/SPECTRA/

File names are generally:

lte{Teff/100}-{Logg}{[M/H]}a[alpha/H].GRIDNAME.spec.7.[gz|bz2|xz]

The first three columns are wavelength in Å, log10(F_𝜆), and log10(B_𝜆), where the latter is the blackbody flux for
the given Teff. The fluxes can nominally be converted into absolute units with an offset of 8 in log space, but I doubt
that can be trusted much. Subsequent columns are related to various spectral lines. See https://phoenix.ens-lyon.fr/
Grids/FORMAT .

The files do not come sorted!

pwkit.phoenix.load_spectrum(path, smoothing=181, DF=-8.0)
Load a Phoenix model atmosphere spectrum.

path [string] The file path to load.

smoothing [integer] Smoothing to apply. If None, do not smooth. If an integer, smooth with a Hamming
window. Otherwise, the variable is assumed to be a different smoothing window, and the data will be
convolved with it.

DF: float Numerical factor used to compute the emergent flux density.

Returns a Pandas DataFrame containing the columns:

wlen Sample wavelength in Angstrom.

flam Flux density in erg/cm2/s/Å. See pwkit.synphot for related tools.

The values of flam returned by this function are computed from the second column of the data file as specified
in the documentation: flam = 10**(col2 + DF). The documentation states that the default value, -8, is
appropriate for most modern models; but some older models use other values.

Loading takes about 5 seconds on my current laptop. Un-smoothed spectra have about 630,000 samples.

3.15 Flux density models of radio calibrators (pwkit.
radio_cal_models)

pwkit.radio_cal_models - models of radio calibrator flux densities.

From the command line:

python -m pwkit.radio_cal_models [-f] <source> <freq[mhz]>
python -m pwkit.radio_cal_models [-f] CasA <freq[mhz]> <year>

Print the flux density of the specified calibrator at the specified frequency, in Janskys.

Arguments:

<source> the source name (e.g., 3c348)

76 Chapter 3. Scientific Algorithms

https://phoenix.ens-lyon.fr/Grids/BT-Settl/
https://phoenix.ens-lyon.fr/Grids/FORMAT
https://phoenix.ens-lyon.fr/Grids/FORMAT

pwkit, Release 1.0.0

<freq> the observing frequency in MHz (e.g., 1420)

<year> is the decimal year of the observation (e.g., 2007.8). Only needed if <source> is CasA.

-f activates “flux” mode, where a three-item string is printed that can be passed to MIRIAD tasks that accept a model
flux and spectral index argument.

pwkit.radio_cal_models.cas_a(freq_mhz, year)
Return the flux of Cas A given a frequency and the year of observation. Based on the formula given in Baars et
al., 1977.

Parameters:

freq - Observation frequency in MHz. year - Year of observation. May be floating-point.

Returns: s, flux in Jy.

pwkit.radio_cal_models.init_cas_a(year)
Insert an entry for Cas A into the table of models. Need to specify the year of the observations to account for
the time variation of Cas A’s emission.

3.16 Helpers for X-ray spectral modeling with the Sherpa packge
(pwkit.sherpa)

This module contains helpers for modeling X-ray spectra with the Sherpa package.

This module includes a grab-bag of helpers in following broad topics:

• Additional Spectral Models

• Tools for Plotting with Sherpa Data Objects

• Data Structure Utilities

3.16.1 Additional Spectral Models

The pwkit.sherpa module provides several tools for constructing models not provided in the standard Sherpa
distribution.

class pwkit.sherpa.PowerLawApecDemModel(name, kt_array=None)
A model with contributions from APEC plasmas at a range of temperatures, scaling with temperature.

Constructor arguments are:

name The Sherpa name of the resulting model instance.

kt_array = None An array of temperatures to use for the plasma models. If left at the default of None, a hard-
coded default is used that spans temperatures of ~0.03 to 10 keV with logarithmic spacing.

The contribution at each temperature scales with kT as a power law. The model parameters are:

gfac The power-law normalization parameter. The contribution at temperature kT is norm * kT**gfac.

Abundanc The standard APEC abundance parameter.

redshift The standard APEC redshift parameter.

norm The standard overall normalization parameter.

This model is only efficient to compute if Abundanc and redshift are frozen.

3.16. Helpers for X-ray spectral modeling with the Sherpa packge (pwkit.sherpa) 77

http://cxc.harvard.edu/sherpa/

pwkit, Release 1.0.0

pwkit.sherpa.make_fixed_temp_multi_apec(kTs, name_template=’apec%d’, norm=None)
Create a model summing multiple APEC components at fixed temperatures.

kTs An iterable of temperatures for the components, in keV.

name_template = ‘apec%d’ A template to use for the names of each component; it is string-formatted with the
0-based component number as an argument.

norm = None An initial normalization to be used for every component, or None to use the Sherpa default.

Returns: A tuple (total_model, sub_models), where total_model is a Sherpa model representing the
sum of the APEC components and sub_models is a list of the individual models.

This function creates a vector of APEC model components and sums them. Their kT parameters are set and then
frozen (using sherpa.astro.ui.freeze()), so that upon exit from this function, the amplitude of each
component is the only free parameter.

3.16.2 Tools for Plotting with Sherpa Data Objects

get_source_qq_data([id]) Get data for a quantile-quantile plot of the source data
and model.

get_bkg_qq_data([id, bkg_id]) Get data for a quantile-quantile plot of the background
data and model.

make_qq_plot(kev, obs, mdl, unit, key_text) Make a quantile-quantile plot comparing events and a
model.

make_multi_qq_plots(arrays, key_text) Make a quantile-quantile plot comparing multiple sets
of events and models.

make_spectrum_plot(model_plot, data_plot,
desc)

Make a plot of a spectral model and data.

make_multi_spectrum_plots(model_plot, . . . [,
. . .])

Make a plot of multiple spectral models and data.

pwkit.sherpa.get_source_qq_data(id=None)
Get data for a quantile-quantile plot of the source data and model.

id The dataset id for which to get the data; defaults if unspecified.

Returns: An ndarray of shape (3, npts). The first slice is the energy axis in keV; the second is the observed
values in each bin (counts, or rate, or rate per keV, etc.); the third is the corresponding model value in each
bin.

The inputs are implicit; the data are obtained from the current state of the Sherpa ui module.

pwkit.sherpa.get_bkg_qq_data(id=None, bkg_id=None)
Get data for a quantile-quantile plot of the background data and model.

id The dataset id for which to get the data; defaults if unspecified.

bkg_id The identifier of the background; defaults if unspecified.

Returns: An ndarray of shape (3, npts). The first slice is the energy axis in keV; the second is the observed
values in each bin (counts, or rate, or rate per keV, etc.); the third is the corresponding model value in each
bin.

The inputs are implicit; the data are obtained from the current state of the Sherpa ui module.

pwkit.sherpa.make_qq_plot(kev, obs, mdl, unit, key_text)
Make a quantile-quantile plot comparing events and a model.

78 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

kev A 1D, sorted array of event energy bins measured in keV.

obs A 1D array giving the number or rate of events in each bin.

mdl A 1D array giving the modeled number or rate of events in each bin.

unit Text describing the unit in which obs and mdl are measured; will be shown on the plot axes.

key_text Text describing the quantile-quantile comparison quantity; will be shown on the plot legend.

Returns: An omega.RectPlot instance.

TODO: nothing about this is Sherpa-specific. Same goes for some of the plotting routines in pkwit.
environments.casa.data; might be reasonable to add a submodule for generic X-ray-y plotting routines.

pwkit.sherpa.make_multi_qq_plots(arrays, key_text)
Make a quantile-quantile plot comparing multiple sets of events and models.

arrays

X.

key_text Text describing the quantile-quantile comparison quantity; will be shown on the plot legend.

Returns: An omega.RectPlot instance.

TODO: nothing about this is Sherpa-specific. Same goes for some of the plotting routines in pkwit.
environments.casa.data; might be reasonable to add a submodule for generic X-ray-y plotting routines.

TODO: Some gross code duplication here.

pwkit.sherpa.make_spectrum_plot(model_plot, data_plot, desc, xmin_clamp=0.01,
min_valid_x=None, max_valid_x=None)

Make a plot of a spectral model and data.

model_plot A model plot object returned by Sherpa from a call like ui.get_model_plot() or
ui.get_bkg_model_plot().

data_plot A data plot object returned by Sherpa from a call like ui.get_source_plot() or ui.get_bkg_plot().

desc Text describing the origin of the data; will be shown in the plot legend (with “Model” and “Data” ap-
pended).

xmin_clamp The smallest “x” (energy axis) value that will be plotted; default is 0.01. This is needed to allow
the plot to be shown on a logarithmic scale if the energy axes of the model go all the way to 0.

min_valid_x Either None, or the smallest “x” (energy axis) value in which the model and data are valid; this
could correspond to a range specified in the “notice” command during analysis. If specified, a gray band
will be added to the plot showing the invalidated regions.

max_valid_x Like min_valid_x but for the largest “x” (energy axis) value in which the model and data are valid.

Returns: A tuple (plot, xlow, xhigh), where plot an OmegaPlot RectPlot instance, xlow is the left
edge of the plot bounds, and xhigh is the right edge of the plot bounds.

pwkit.sherpa.make_multi_spectrum_plots(model_plot, plotids, data_getter, desc,
xmin_clamp=0.01, min_valid_x=None,
max_valid_x=None)

Make a plot of multiple spectral models and data.

model_plot A model plot object returned by Sherpa from a call like ui.get_model_plot() or ui.
get_bkg_model_plot().

data_plots An iterable of data plot objects returned by Sherpa from calls like ui.get_source_plot(id)
or ui.get_bkg_plot(id).

3.16. Helpers for X-ray spectral modeling with the Sherpa packge (pwkit.sherpa) 79

pwkit, Release 1.0.0

desc Text describing the origin of the data; will be shown in the plot legend (with “Model” and “Data #<num-
ber>” appended).

xmin_clamp The smallest “x” (energy axis) value that will be plotted; default is 0.01. This is needed to allow
the plot to be shown on a logarithmic scale if the energy axes of the model go all the way to 0.

min_valid_x Either None, or the smallest “x” (energy axis) value in which the model and data are valid; this
could correspond to a range specified in the “notice” command during analysis. If specified, a gray band
will be added to the plot showing the invalidated regions.

max_valid_x Like min_valid_x but for the largest “x” (energy axis) value in which the model and data are valid.

Returns: A tuple (plot, xlow, xhigh), where plot an OmegaPlot RectPlot instance, xlow is the left
edge of the plot bounds, and xhigh is the right edge of the plot bounds.

TODO: not happy about the code duplication with make_spectrum_plot() but here we are.

3.16.3 Data Structure Utilities

expand_rmf_matrix(rmf) Expand an RMF matrix stored in compressed form.
derive_identity_arf(name, arf) Create an “identity” ARF that has uniform sensitivity.
derive_identity_rmf(name, rmf) Create an “identity” RMF that does not mix energies.

pwkit.sherpa.expand_rmf_matrix(rmf)
Expand an RMF matrix stored in compressed form.

rmf An RMF object as might be returned by sherpa.astro.ui.get_rmf().

Returns: A non-sparse RMF matrix.

The Response Matrix Function (RMF) of an X-ray telescope like Chandra can be stored in a sparse format as
defined in OGIP Calibration Memo CAL/GEN/92-002. For visualization and analysis purposes, it can be useful
to de-sparsify the matrices stored in this way. This function does that, returning a two-dimensional Numpy
array.

pwkit.sherpa.derive_identity_arf(name, arf)
Create an “identity” ARF that has uniform sensitivity.

name The name of the ARF object to be created; passed to Sherpa.

arf An existing ARF object on which to base this one.

Returns: A new ARF1D object that has a uniform spectral response vector.

In many X-ray observations, the relevant background signal does not behave like an astrophysical source that is
filtered through the telescope’s response functions. However, I have been unable to get current Sherpa (version
4.9) to behave how I want when working with backround models that are not filtered through these response
functions. This function constructs an “identity” ARF response function that has uniform sensitivity as a func-
tion of detector channel.

pwkit.sherpa.derive_identity_rmf(name, rmf)
Create an “identity” RMF that does not mix energies.

name The name of the RMF object to be created; passed to Sherpa.

rmf An existing RMF object on which to base this one.

Returns: A new RMF1D object that has a response matrix that is as close to diagonal as we can get in energy
space, and that has a constant sensitivity as a function of detector channel.

80 Chapter 3. Scientific Algorithms

https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html

pwkit, Release 1.0.0

In many X-ray observations, the relevant background signal does not behave like an astrophysical source that is
filtered through the telescope’s response functions. However, I have been unable to get current Sherpa (version
4.9) to behave how I want when working with backround models that are not filtered through these response
functions. This function constructs an “identity” RMF response matrix that provides the best possible approx-
imation of a passthrough “instrumental response”: it mixes energies as little as possible and has a uniform
sensitivity as a function of detector channel.

3.17 Synthetic photometry (pwkit.synphot)

Synthetic photometry and database of instrumental bandpasses.

The basic structure is that we have a registry of bandpass info. You can use it to create Bandpass objects that can
perform various calculations, especially the computation of synthetic photometry given a spectral model. Some key
attributes of each bandpass are pre-computed so that certain operations can be done without needing to load the actual
bandpass profile (though so far none of these profiles are very large at all).

The bandpass definitions built into this module are:

• 2MASS (JHK)

• Bessell (UBVRI)

• GALEX (NUV, FUV)

• LMIRCam on LBT

• MEarth

• Mauna Kea Observatory (MKO) (JHKLM)

• SDSS (u’ g’ r’ i’ z’)

• Swift (UVW1)

• WISE (1234)

Classes:

AlreadyDefinedError(fmt, *args) Raised when re-registering bandpass info.
Bandpass Computations regarding a particular filter bandpass.
NotDefinedError(fmt, *args) Raised when needed bandpass info is unavailable.
Registry() A registry of known bandpass properties.

Functions:

get_std_registry() Get a Registry object pre-filled with information for
standard telescopes.

Various internal utilities may be useful for reference but are not documented here.

Variables:

builtin_registrars Hashtable of functions to register the builtin telescopes.

3.17. Synthetic photometry (pwkit.synphot) 81

pwkit, Release 1.0.0

3.17.1 Example

from pwkit import synphot as ps, cgs as pc, msmt as pm
reg = ps.get_std_registry()
print(reg.telescopes()) # list known telescopes
print(reg.bands('2MASS')) # list known 2MASS bands
bp = reg.get('2MASS', 'Ks')
mag = 12.83
mjy = pm.repval(bp.mag_to_fnu(mag) * pc.jypercgs * 1e3)
print('%.2f mag is %.2f mjy in 2MASS/Ks' % (mag, mjy))

3.17.2 Conventions

It is very important to maintain consistent conventions throughout.

Wavelengths are measured in angstroms. Flux densities are either per-wavelength (f_𝜆, “flam”) or per-frequency
(f_𝜈, “fnu”). These are measured in units of erg/s/cm2/Å and erg/s/cm2/Hz, respectively. Janskys can be converted
to f_𝜈 by multiplying by cgs.cgsperjy. f_𝜈’s and f_𝜆’s can be interconverted for a given filter if you know its “pivot
wavelength”. Some of the routines below show how to calculate this and do the conversion. “AB magnitudes” can be
directly converted to Janskys and, thus, f_𝜈’s.

Filter bandpasses can be expressed in two conventions: either “equal-energy” (EE) or “quantum-efficiency” (QE). The
former gives the response per unit energy across the band, while the latter gives the response per photon. The EE
convention can be integrated directly against a model spectrum, so we store all bandpasses internally in this conven-
tion. CCDs are photon-counting devices and so their response curves are generally expressed in the QE convention.
Interconversion is easy: EE = QE * 𝜆.

We don’t expect any particular normalization of bandpass response curves.

The “width” of a bandpass is not a well-defined quantity, but is often needed for display purposes or approximate
calculations. We use the locations of the half-maximum points (in the EE convention) to define the band edges.

This module requires Scipy and Pandas. It doesn’t reeeeallllly need Pandas but it’s convenient.

3.17.3 References

Casagrande & VandenBerg (2014; arxiv:1407.6095) has a lot of good stuff; see also references therein.

References for specific bandpasses are given in their implementation docstrings.

3.17.4 The Registry class

pwkit.synphot.get_std_registry()
Get a Registry object pre-filled with information for standard telescopes.

class pwkit.synphot.Registry
A registry of known bandpass properties.

Instances of Registry have the following methods:

bands(telescope) Return a list of bands associated with the specified tele-
scope.

get(telescope, band) Get a Bandpass object for a known telescope and filter.
register_bpass(telescope, klass) Register a Bandpass class.

Continued on next page

82 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

Table 21 – continued from previous page
register_halfmaxes(telescope, band, lower, up-
per)

Register precomputed half-max points.

register_pivot_wavelength(telescope, band,
wlen)

Register precomputed pivot wavelengths.

telescopes() Return a list of telescopes known to this registry.

Registry.bands(telescope)
Return a list of bands associated with the specified telescope.

Registry.get(telescope, band)
Get a Bandpass object for a known telescope and filter.

Registry.register_bpass(telescope, klass)
Register a Bandpass class.

Registry.register_halfmaxes(telescope, band, lower, upper)
Register precomputed half-max points.

Registry.register_pivot_wavelength(telescope, band, wlen)
Register precomputed pivot wavelengths.

Registry.telescopes()
Return a list of telescopes known to this registry.

pwkit.synphot.builtin_registrars = {'2MASS': <function register_2mass>, 'Bessell': <function register_bessell>, 'GALEX': <function register_galex>, 'LBT': <function register_lbt>, 'MEarth': <function register_mearth>, 'MKO': <function register_mko>, 'SDSS': <function register_sdss>, 'Swift': <function register_swift>, 'WISE': <function register_wise>}
Hashtable of functions to register the builtin telescopes.

3.17.5 The Bandpass class

class pwkit.synphot.Bandpass
Computations regarding a particular filter bandpass.

The underlying bandpass shape is assumed to be sampled at discrete points. It is stored in _data and loaded
on-demand. The object is a Pandas DataFrame containing at least the columns wlen and resp. The former
holds the wavelengths of the sample points, in Ångström and in ascending order. The latter gives the response
curve in the EE convention. No particular normalization is assumed. Other columns may be present but are not
used generically.

Instances of Bandpass have the following attributes:

band The name of this bandpass’ associated band.
native_flux_kind Which kind of flux this bandpass is calibrated to: ‘flam’,

‘fnu’, or ‘none’.
registry This object’s parent Registry instance.
telescope The name of this bandpass’ associated telescope.

And the following methods:

calc_halfmax_points() Calculate the wavelengths of the filter half-maximum
values.

calc_pivot_wavelength() Compute and return the bandpass’ pivot wavelength.
halfmax_points() Get the bandpass’ half-maximum wavelengths.
jy_to_flam(jy) Convert a f_𝜈 flux density measured in Janskys to a f_𝜆

flux density.
Continued on next page

3.17. Synthetic photometry (pwkit.synphot) 83

pwkit, Release 1.0.0

Table 23 – continued from previous page
mag_to_flam(mag) Convert a magnitude in this band to a f_𝜆 flux density.
mag_to_fnu(mag) Convert a magnitude in this band to a f_𝜈 flux density.
pivot_wavelength() Get the bandpass’ pivot wavelength.
synphot(wlen, flam) wlen and flam give a tabulated model spectrum in wave-

length and f_𝜆 units.
blackbody(T) Calculate the contribution of a blackbody through this

filter.

Detailed descriptions of attributes

Bandpass.band = None
The name of this bandpass’ associated band.

Bandpass.native_flux_kind = 'none'
Which kind of flux this bandpass is calibrated to: ‘flam’, ‘fnu’, or ‘none’.

Bandpass.registry = None
This object’s parent Registry instance.

Bandpass.telescope = None
The name of this bandpass’ associated telescope.

Detailed descriptions of methods

Bandpass.calc_halfmax_points()
Calculate the wavelengths of the filter half-maximum values.

Bandpass.calc_pivot_wavelength()
Compute and return the bandpass’ pivot wavelength.

This value is computed directly from the bandpass data, not looked up in the Registry. Most of the values in the
Registry were in fact derived from this function originally.

Bandpass.halfmax_points()
Get the bandpass’ half-maximum wavelengths. These can be used to compute a representative bandwidth, or
for display purposes.

Unlike calc_halfmax_points(), this function will use a cached value if available.

Bandpass.jy_to_flam(jy)
Convert a f_𝜈 flux density measured in Janskys to a f_𝜆 flux density.

This conversion is bandpass-dependent because it depends on the pivot wavelength of the bandpass used to
measure the flux density.

Bandpass.mag_to_flam(mag)
Convert a magnitude in this band to a f_𝜆 flux density.

It is assumed that the magnitude has been computed in the appropriate photometric system. The definition of
“appropriate” will vary from case to case.

Bandpass.mag_to_fnu(mag)
Convert a magnitude in this band to a f_𝜈 flux density.

It is assumed that the magnitude has been computed in the appropriate photometric system. The definition of
“appropriate” will vary from case to case.

84 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

Bandpass.pivot_wavelength()
Get the bandpass’ pivot wavelength.

Unlike calc_pivot_wavelength(), this function will use a cached value if available.

Bandpass.synphot(wlen, flam)
wlen and flam give a tabulated model spectrum in wavelength and f_𝜆 units. We interpolate linearly over both
the model and the bandpass since they’re both discretely sampled.

Note that quadratic interpolation is both much slower and can blow up fatally in some cases. The latter issue
might have to do with really large X values that aren’t zero-centered, maybe?

I used to use the quadrature integrator, but Romberg doesn’t issue complaints the way quadrature did. I should
probably acquire some idea about what’s going on under the hood.

Bandpass.blackbody(T)
Calculate the contribution of a blackbody through this filter. T is the blackbody temperature in Kelvin. Returns
a band-averaged spectrum in f_𝜆 units.

We use the composite Simpson’s rule to integrate over the points at which the filter response is sampled. Note
that this is a different technique than used by synphot, and so may give slightly different answers than that
function.

3.17.6 Simple, careful conversions

fnu_cgs_to_flam_ang(fnu_cgs, pivot_angstrom) erg/s/cm2/Hz → erg/s/cm2/Å
flam_ang_to_fnu_cgs(flam_ang,
pivot_angstrom)

erg/s/cm2/Å → erg/s/cm2/Hz

abmag_to_fnu_cgs(abmag) Convert an AB magnitude to f_𝜈 in erg/s/cm2/Hz.
abmag_to_flam_ang(abmag, pivot_angstrom) Convert an AB magnitude to f_𝜆 in erg/s/cm2/Å.
ghz_to_ang(ghz) Convert a photon frequency in GHz to its wavelength in

Ångström.
flat_ee_bandpass_pivot_wavelength(wavelen1,
. . .)

Compute the pivot wavelength of a bandpass that’s flat
in equal-energy terms.

pivot_wavelength_ee(bpass) Compute pivot wavelength assuming equal-energy con-
vention.

pivot_wavelength_qe(bpass) Compute pivot wavelength assuming quantum-
efficiency convention.

pwkit.synphot.fnu_cgs_to_flam_ang(fnu_cgs, pivot_angstrom)
erg/s/cm2/Hz → erg/s/cm2/Å

pwkit.synphot.flam_ang_to_fnu_cgs(flam_ang, pivot_angstrom)
erg/s/cm2/Å → erg/s/cm2/Hz

pwkit.synphot.abmag_to_fnu_cgs(abmag)
Convert an AB magnitude to f_𝜈 in erg/s/cm2/Hz.

pwkit.synphot.abmag_to_flam_ang(abmag, pivot_angstrom)
Convert an AB magnitude to f_𝜆 in erg/s/cm2/Å. AB magnitudes are f_𝜈 quantities, so a pivot wavelength is
needed.

pwkit.synphot.ghz_to_ang(ghz)
Convert a photon frequency in GHz to its wavelength in Ångström.

pwkit.synphot.flat_ee_bandpass_pivot_wavelength(wavelen1, wavelen2)
Compute the pivot wavelength of a bandpass that’s flat in equal-energy terms. It turns out to be their harmonic

3.17. Synthetic photometry (pwkit.synphot) 85

pwkit, Release 1.0.0

mean.

pwkit.synphot.pivot_wavelength_ee(bpass)
Compute pivot wavelength assuming equal-energy convention.

bpass should have two properties, resp and wlen. The units of wlen can be anything, and resp need not be
normalized in any particular way.

pwkit.synphot.pivot_wavelength_qe(bpass)
Compute pivot wavelength assuming quantum-efficiency convention. Note that this is NOT what we generally
use in this module.

bpass should have two properties, resp and wlen. The units of wlen can be anything, and resp need not be
normalized in any particular way.

3.17.7 Exceptions

AlreadyDefinedError(fmt, *args) Raised when re-registering bandpass info.
NotDefinedError(fmt, *args) Raised when needed bandpass info is unavailable.

class pwkit.synphot.AlreadyDefinedError(fmt, *args)
Raised when re-registering bandpass info.

class pwkit.synphot.NotDefinedError(fmt, *args)
Raised when needed bandpass info is unavailable.

3.18 Scaling relations for physical properties of ultra-cool dwarfs
(pwkit.ucd_physics)

pwkit.ucd_physics - Physical calculations for (ultra)cool dwarfs.

These functions generally implement various nontrivial physical relations published in the literature. See docstrings
for references.

Functions:

bcj_from_spt J-band bolometric correction from SpT.

bck_from_spt K-band bolometric correction from SpT.

load_bcah98_mass_radius Load Baraffe+ 1998 mass/radius data.

mass_from_j Mass from absolute J magnitude.

mk_radius_from_mass_bcah98 Radius from mass, using BCAH98 models.

tauc_from_mass Convective turnover time from mass.

pwkit.ucd_physics.bcj_from_spt(spt)
Calculate a bolometric correction constant for a J band magnitude based on a spectral type, using the fit of
Wilking+ (1999AJ. . . .117..469W).

spt - Numerical spectral type. M0=0, M9=9, L0=10, . . .

Returns: the correction bcj such that m_bol = j_abs + bcj, or NaN if spt is out of range.

Valid values of spt are between 0 and 10.

86 Chapter 3. Scientific Algorithms

pwkit, Release 1.0.0

pwkit.ucd_physics.bck_from_spt(spt)
Calculate a bolometric correction constant for a J band magnitude based on a spectral type, using the fits of
Wilking+ (1999AJ. . . .117..469W), Dahn+ (2002AJ. . . .124.1170D), and Nakajima+ (2004ApJ. . . 607..499N).

spt - Numerical spectral type. M0=0, M9=9, L0=10, . . .

Returns: the correction bck such that m_bol = k_abs + bck, or NaN if spt is out of range.

Valid values of spt are between 2 and 30.

pwkit.ucd_physics.load_bcah98_mass_radius(tablelines, metallicity=0, heliumfrac=0.275,
age_gyr=5.0, age_tol=0.05)

Load mass and radius from the main data table for the famous models of Baraffe+ (1998A&A. . . 337..403B).

tablelines An iterable yielding lines from the table data file. I’ve named the file ‘1998A&A. . . 337..403B_tbl1-
3.dat’ in some repositories (it’s about 150K, not too bad).

metallicity The metallicity of the model to select.

heliumfrac The helium fraction of the model to select.

age_gyr The age of the model to select, in Gyr.

age_tol The tolerance on the matched age, in Gyr.

Returns: (mass, radius), where both are Numpy arrays.

The ages in the data table vary slightly at fixed metallicity and helium fraction. Therefore, there needs to be a
tolerance parameter for matching the age.

pwkit.ucd_physics.mass_from_j(j_abs)
Estimate mass in cgs from absolute J magnitude, using the relationship of Delfosse+ (2000A&A. . . 364..217D).

j_abs - The absolute J magnitude.

Returns: the estimated mass in grams.

If j_abs > 11, a fixed result of 0.1 Msun is returned. Values of j_abs < 5.5 are illegal and get NaN. There is a
discontinuity in the relation at j_abs = 11, which yields 0.0824 Msun.

pwkit.ucd_physics.mk_radius_from_mass_bcah98(*args, **kwargs)
Create a function that maps (sub)stellar mass to radius, based on the famous models of Baraffe+
(1998A&A. . . 337..403B).

tablelines An iterable yielding lines from the table data file. I’ve named the file ‘1998A&A. . . 337..403B_tbl1-
3.dat’ in some repositories (it’s about 150K, not too bad).

metallicity The metallicity of the model to select.

heliumfrac The helium fraction of the model to select.

age_gyr The age of the model to select, in Gyr.

age_tol The tolerance on the matched age, in Gyr.

Returns: a function mtor(mass_g), return a radius in cm as a function of a mass in grams. The mass must be
between 0.05 and 0.7 Msun.

The ages in the data table vary slightly at fixed metallicity and helium fraction. Therefore, there needs to be a
tolerance parameter for matching the age.

This function requires Scipy.

pwkit.ucd_physics.tauc_from_mass(mass_g)
Estimate the convective turnover time from mass, using the method described in Cook+
(2014ApJ. . . 785. . . 10C).

3.18. Scaling relations for physical properties of ultra-cool dwarfs (pwkit.ucd_physics) 87

pwkit, Release 1.0.0

mass_g - UCD mass in grams.

Returns: the convective turnover timescale in seconds.

Masses larger than 1.3 Msun are out of range and yield NaN. If the mass is <0.1 Msun, the turnover time is fixed
at 70 days.

The Cook method was inspired by the description in McLean+ (2012ApJ. . . 746. . . 23M). It is a hybrid of
the method described in Reiners & Basri (2010ApJ. . . 710..924R) and the data shown in Kiraga & Stepien
(2007AcA. . . .57..149K). However, this version imposes the 70-day cutoff in terms of mass, not spectral type,
so that it is entirely defined in terms of a single quantity.

There are discontinuities between the different break points! Any future use should tweak the coefficients to
make everything smooth.

88 Chapter 3. Scientific Algorithms

CHAPTER 4

Command-line tools

This documentation has a lot of stubs.

4.1 Quick astronomical calculations (astrotool)

pwkit.cli.astrotool - the ‘astrotool’ program.

4.2 Quick operations on astronomical images (pwkit.cli.imtool)

pwkit.cli.imtool - the ‘imtool’ program.

4.3 Single-command compilation of LaTeX documents
(latexdriver)

pwkit.cli.latexdriver - the ‘latexdriver’ program.

This used to be a nice little shell script, but for portability it’s better to do this in Python. And now we can optionally
provide some BibTeX-related magic.

4.4 Wrap the output of a sub-program with extra information
(wrapout)

pwkit.cli.wrapout - the ‘wrapout’ program.

89

pwkit, Release 1.0.0

90 Chapter 4. Command-line tools

CHAPTER 5

Data Visualization

This documentation has a lot of stubs.

5.1 Mapping arbitrary data to color scales (pwkit.colormaps)

pwkit.colormaps – tools to conver arrays of real-valued data to other formats (usually, RGB24) for visualization.

TODO: “heated body” map.

The main interface is the factory_map dictionary from colormap names to factory functions. base_factory_names lists
the names of a set of color maps. Additional ones are available with the suffixes “_reverse” and “_sqrt” that apply the
relevant transforms.

The factory functions return another function, the “mapper”. Each mapper takes a single argument, an array of values
between 0 and 1, and returns the mapped colors. If the input array has shape S, the returned value has a shape (S + (3,
)), with mapped[. . . ,0] being the R values, between 0 and 1, etc.

Example:

data = np.array ([<things between 0 and 1>]) mapper = factory_map[‘cubehelix_blue’]() rgb = mapper
(data) green_values = rgb[:,1] last_rgb = rgb[-1]

The basic colormap names are:

moreland_bluered Divergent colormap from intense blue (at 0) to intense red (at 1), passing through
white

cubehelix_dagreen From black to white through rainbow colors

cubehelix_blue From black to white, with blue hues

pkgw From black to red, through purplish

black_to_white, black_to_red, black_to_green, black_to_blue From black to the named colors.

white_to_black, white_to_red, white_to_green, white_to_blue From white to the named colors.

91

pwkit, Release 1.0.0

The mappers can also take keyword arguments, including at least “transform”, which specifies simple transforms that
can be applied to the colormaps. These are (in terms of symbolic constants and literal string values):

‘none’ - No transform (the default) ‘reverse’ - x -> 1 - x (reverses the colormap) ‘sqrt’ - x -> sqrt (x)

For each transform other than “none”, factory_map contains an entry with an underscore and the transform name
applied (e.g., “pkgw_reverse”) that has that transform applied.

The initial inspiration was an implementation of the ideas in “Diverging Color Maps for Scientific Visualization
(Expanded)”, Kenneth Moreland,

http://www.cs.unm.edu/~kmorel/documents/ColorMaps/index.html

I’ve realized that I’m not too fond of the white mid-values in these color maps in many cases. So I also added an
implementation of the “cube helix” color map, described by D. A. Green in

“A colour scheme for the display of astronomical intensity images” http://adsabs.harvard.edu/abs/2011BASI. . . 39..289G
(D. A. Green, 2011 Bull. Ast. Soc. of India, 39 289)

I made up the pkgw map myself (who’d have guessed?).

5.2 Tracing contours (pwkit.contours)

pwkit.contours - Tracing contours in functions and data.

Uses my own homebrew algorithm. So far, it’s only tested on extremely well-behaved functions, so probably doesn’t
cope well with poorly-behaved ones.

pwkit.contours.analytic_2d(f, df, x0, y0, maxiters=5000, defeta=0.05, netastep=12, vtol1=0.001,
vtol2=1e-08, maxnewt=20, dorder=7, goright=False)

Sample a contour in a 2D analytic function. Arguments:

f A function, mapping (x, y) -> z.

df The partial derivative: df (x, y) -> [dz/dx, dz/dy]. If None, the derivative of f is approximated numerically
with scipy.derivative.

x0 Initial x value. Should be of “typical” size for the problem; avoid 0.

y0 Initial y value. Should be of “typical” size for the problem; avoid 0.

Optional arguments:

maxiters Maximum number of points to create. Default 5000.

defeta Initially offset by distances of defeta*[df/dx, df/dy] Default 0.05.

netastep Number of steps between defeta and the machine resolution in which we test eta values for goodness.
(OMG FIXME doc). Default 12.

vtol1 Tolerance for constancy in the value of the function in the initial offset step. The value is only allowed to
vary by f(x0,y0) * vtol1. Default 1e-3.

vtol2 Tolerance for constancy in the value of the function in the along the contour. The value is only allowed
to vary by f(x0,y0) * vtol2. Default 1e-8.

maxnewt Maximum number of Newton’s method steps to take when attempting to hone in on the desired
function value. Default 20.

dorder Number of function evaluations to perform when evaluating the derivative of f numerically. Must be an
odd integer greater than 1. Default 7.

goright If True, trace the contour rightward (as looking uphill), rather than leftward (the default).

92 Chapter 5. Data Visualization

http://www.cs.unm.edu/~kmorel/documents/ColorMaps/index.html
http://adsabs.harvard.edu/abs/2011BASI...39..289G

pwkit, Release 1.0.0

5.3 Utilities for data visualization (pwkit.data_gui_helpers)

pwkit.data_gui_helpers - helpers for GUIs looking at data arrays

Classes:

Clipper - Map data into [0,1] ColorMapper - Map data onto RGB colors using pwkit.colormaps Stretcher - Map data
within [0,1] using a stretch like sqrt, etc.

Functions:

data_to_argb32 - Turn arbitrary data values into ARGB32 colors. data_to_imagesurface - Turn arbitrary data values
into a Cairo ImageSurface.

pwkit.data_gui_helpers.data_to_argb32(data, cmin=None, cmax=None, stretch=’linear’,
cmap=’black_to_blue’)

Turn arbitrary data values into ARGB32 colors.

There are three steps to this process: clipping the data values to a maximum and minimum; stretching the
spacing between those values; and converting their amplitudes into colors with some kind of color map.

data - Input data; can (and should) be a MaskedArray if some values are invalid.

cmin - The data clip minimum; all values <= cmin are treated identically. If None (the default), data.min()
is used.

cmax - The data clip maximum; all values >= cmax are treated identically. If None (the default),
data.max() is used.

stretch - The stretch function name; ‘linear’, ‘sqrt’, or ‘square’; see the Stretcher class.

cmap - The color map name; defaults to ‘black_to_blue’. See the pwkit.colormaps module for more
choices.

Returns a Numpy array of the same shape as data with dtype np.uint32, which represents the ARGB32 colorized
version of the data. If your colormap is restricted to a single R or G or B channel, you can make color images
by bitwise-or’ing together different such arrays.

pwkit.data_gui_helpers.data_to_imagesurface(data, **kwargs)
Turn arbitrary data values into a Cairo ImageSurface.

The method and arguments are the same as data_to_argb32, except that the data array will be treated as 2D, and
higher dimensionalities are not allowed. The return value is a Cairo ImageSurface object.

Combined with the write_to_png() method on ImageSurfaces, this is an easy way to quickly visualize 2D data.

class pwkit.data_gui_helpers.Stretcher(mode)
Assumes that its inputs are in [0, 1]. Maps its outputs to the same range.

offset_cbrt(dest)
This stretch is useful when you have values that are symmetrical around zero, and you want to enhance
contrasts at small values while preserving sign.

5.4 Easy visualization of matrices with GTK+ version 2 (pwkit.
ndshow_gtk2)

5.5 Easy visualization of matrices with GTK+ version 3 (pwkit.
ndshow_gtk3)

5.3. Utilities for data visualization (pwkit.data_gui_helpers) 93

pwkit, Release 1.0.0

94 Chapter 5. Data Visualization

CHAPTER 6

Data input and output

This documentation has a lot of stubs.

6.1 Streaming output from other programs (pwkit.slurp)

The pwkit.slurp module makes it convenient to read output generated by other programs. This is accomplished
with a context-manager class known as Slurper, which is built on top of the standard subprocess.Popen
module.

The chief advantage of Slurper above subprocess.Popen is that it provides convenient, streaming access to
subprogram output, maintaining the distinction between “stdout” (standard output, written to file descriptor #1) and
“stderr” (standard error, written to file descriptor #2). It can also forward signals to the child program.

Standard usage might look like:

from pwkit import slurp
argv = ['cat', '/etc/passwd']

with slurp.Slurper (argv, linebreak=True) as slurper:
for etype, data in slurper:

if etype == 'stdout':
print ('got line:', data)

print ('exit code was:', slurper.proc.returncode)

Slurper is a context manager to ensure that the child process is always cleaned up. Within the context manager
body, you should iterate over the Slurper instance to get a series of “event” 2-tuples consisting of a Unicode string
giving the event type, and the event data. Most, but not all, events have to do with receiving data over the stdout or
stderr pipes. The events are:

95

https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.Popen

pwkit, Release 1.0.0

Event type Event data Description
"stdout" The output Data were received from the subprogram’s standard output.
"stderr" The output Data were received from the subprogram’s standard error.
"forwarded-signal" The signal number This process received a signal and forwarded it to the child.
"timeout" None No data were received from the child within a fixed timeout.

The data provided on the "stdout" and "stderr" events follow the usual Python patterns for EOF. Namely, when
either of those pipes is closed by the subprocess, a final event is sent in which the data payload has zero length. (It
may be either a bytes object or a Unicode string depending on whether decoding is enabled; see below.)

Warning: It is important to realize that programs that use the standard C I/O routines, such as Python programs,
buffer their output by default. The pwkit.slurp module may appear to be having problems while really the
child program is batching up its output and writing it all at once. This can be surprising because the default
behavior is line-buffered when stdout is connected to a TTY (as when you run programs in your terminal), but
buffered in large blocks when connected to a pipe (as when using this module). On systems built on glibc, you
can control this by using the stdbuf program to launch your subprogram with different buffering options. To
run the command foo bar with both stdout and stderr buffered at the line level, run stdbuf -oL -eL foo
bar. To disable buffering on both streams, run stdbuf -o0 -e0 foo bar.

class pwkit.slurp.Slurper(argv=None, env=None, cwd=None, propagate_signals=True,
timeout=10, linebreak=False, encoding=None,
stdin=slurp.Redirection.DevNull, stdout=slurp.Redirection.Pipe,
stderr=slurp.Redirection.Pipe, executable=None)

Construct a context manager used to read output from a subprogram. argv is used to launch the subprogram
using subprocess.Popen with the shell keyword set to False. env, cwd, executable, stdin, stdout, and stderr
are forwarded to the subprocess.Popen constructor as well.

Regarding the redirection parameters stdin, stdout, and stderr, the constants in the Redirection object
gives more user-friendly names to the analogues provided by the subprocess module, with the addition
of a Redirection.DevNull option emulating behavior added in Python 3. Otherwise these values are
passed to subprocess.Popen verbatim, so you can use anyting that subprocess.Popen would accept.
Keep in mind that you can only fetch the subprogram’s output if one or both of the output paramers are set to
Redirection.Pipe!

If propagate_signals is true, signals received by the parent process will be forwarded to the child process. This
can be valuable to obtain correct behavior on SIGINT, for instance. Forwarded signals are SIGHUP, SIGINT,
SIGQUIT, SIGTERM, SIGUSR1, and SIGUSR2. This is done by overwriting the calling process’ Python signal
handlers; the original handlers are restored upon exit from the with-statement block.

If linebreak is true, output from the child process will be gathered into whole lines (split by "\n") before being
sent to the caller. The newline characters will be discarded, making it impossible to tell whether the final line of
output ended with a newline or not.

If encoding is not None, a decoder will be created with codecs.getincrementaldecoder() and the
subprocess output will be converted from bytes to Unicode before being returned to the calling process.

timeout sets the timeout for the internal select.select() call used to check for output from the subpro-
gram. It is measured in seconds.

Slurper instances have attributes argv , env , cwd, executable, propagate_signals, :timeout,
linebreak, attr:encoding, stdin, :stdout, and stderr recording the construction parameters.

pwkit.slurp.Redirection
An enum-like object defining ways to redirect the I/O streams of the subprogram. These values are identical to
those used in subprocess but with nicer names.

96 Chapter 6. Data input and output

https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#module-subprocess
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/codecs.html#codecs.getincrementaldecoder
https://docs.python.org/3/library/select.html#select.select
https://docs.python.org/3/library/subprocess.html#module-subprocess

pwkit, Release 1.0.0

Constant Meaning
Redirection.Pipe Pipe output to the calling program.
Redirection.Stdout Only valid for stderr; merge it with stdout
Redirection.DevNull Direct input from /dev/null, or output thereto.

The whole raison d’être of pwkit.slurp is to make it easy to communicate output between programs, so you
probably will probably want to use Redirection.Pipe for stdout and stderr most of the time.

6.1.1 Slurper reference

Slurper.proc
The subprocess.Popen instance of the child program. After the program has exited, you can access its exit
code as Slurper.proc.returncode.

Slurper.argv
The argv of the program to be launched.

Slurper.env
Environment dictionary for the program to be launched.

Slurper.cwd
The working directory for the program to be launched.

Slurper.executable
The name of the executable to launch (argv[0] is allowed to differ from this).

Slurper.propagate_signals
Whether to forward the subprogram any signals that are received by the calling process.

Slurper.timeout
The timeout (in seconds) for waiting for output from the child program. If nothing is received, a "timeout"
event is generated.

Slurper.linebreak
Whether to gather the subprogram output into textual lines.

Slurper.encoding
The encoding to be used to decode the subprogram output from bytes to Unicode, or None if no such decoding
is to be done.

Slurper.stdin
How to redirect the standard input of the subprogram, if at all.

Slurper.stdout
How to redirect the standard output of the subprogram, if at all. If not Pipe, no "stdout" events will be
received.

Slurper.stderr
How to redirect the standard error of the subprogram, if at all. If not Pipe, no "stderr" events will be
received. If Stdout, events that would have had a type of "stderr" will have a type of "stdout" instead.

6.2 A simple “ini” file format (pwkit.inifile)

A simple parser for ini-style files that’s better than Python’s ConfigParser/configparser.

Functions:

6.2. A simple “ini” file format (pwkit.inifile) 97

https://docs.python.org/3/library/subprocess.html#subprocess.Popen

pwkit, Release 1.0.0

read Generate a stream of pwkit.Holder instances from an ini-format file.

mutate Rewrite an ini file chunk by chunk.

write Write a stream of pwkit.Holder instances to an ini-format file.

mutate_stream Lower-level version; only operates on streams, not path names.

read_stream Lower-level version; only operates on streams, not path names.

write_stream Lower-level version; only operates on streams, not path names.

mutate_in_place Rewrite an ini file specififed by its path name, in place.

exception pwkit.inifile.InifileError(fmt, *args)

pwkit.inifile.mutate_stream(instream, outstream)
Python 3 compat note: we’re assuming stream gives bytes not unicode.

pwkit.inifile.read_stream(stream)
Python 3 compat note: we’re assuming stream gives bytes not unicode.

pwkit.inifile.write_stream(stream, holders, defaultsection=None)
Very simple writing in ini format. The simple stringification of each value in each Holder is printed, and no
escaping is performed. (This is most relevant for multiline values or ones containing pound signs.) None values
are skipped.

Arguments:

stream A text stream to write to.

holders An iterable of objects to write. Their fields will be written as sections.

defaultsection=None Section name to use if a holder doesn’t contain a section field.

pwkit.inifile.write(stream_or_path, holders, **kwargs)
Very simple writing in ini format. The simple stringification of each value in each Holder is printed, and no
escaping is performed. (This is most relevant for multiline values or ones containing pound signs.) None values
are skipped.

Arguments:

stream A text stream to write to.

holders An iterable of objects to write. Their fields will be written as sections.

defaultsection=None Section name to use if a holder doesn’t contain a section field.

6.3 Outputting data in LaTeX format (pwkit.latex)

pwkit.latex - various helpers for the LaTeX typesetting system.

6.3.1 Classes

Referencer Accumulate a numbered list of bibtex references, then output them.

TableBuilder Create awesome deluxetables programmatically.

98 Chapter 6. Data input and output

pwkit, Release 1.0.0

6.3.2 Functions

latexify_l3col Format value in LaTeX, suitable for tables of limit values.

latexify_n2col Format a number in LaTeX in 2-column decimal-aligned formed.

latexify_u3col Format value in LaTeX, suitable for tables of uncertain values.

latexify Format a value in LaTeX appropriately.

6.3.3 Helpers for TableBuilder

AlignedNumberFormatter Format numbers, aligning them at the decimal point.

BasicFormatter Base class for formatters.

BoolFormatter Format a boolean; default is True -> bullet, False -> nothing.

LimitFormatter Format measurements for a table of limits.

MaybeNumberFormatter Format numbers with a fixed number of decimal places, or objects with __pk_latex__().

UncertFormatter Format measurements for a table of detailed uncertainties.

WideHeader Helper for multi-column headers.

XXX: Barely tested!

class pwkit.latex.AlignedNumberFormatter(nplaces=1)
Format numbers. Allows the number of decimal places to be specified, and aligns the numbers at the decimal
point.

colinfo(builder)
Return (nlcol, colspec, headprefix), where:

nlcol - The number of LaTeX columns encompassed by this logical column.

colspec - Its LaTeX column specification (None to force user to specify).

headprefix - Prefix applied before heading items in {} (e.g., “colhead”).

class pwkit.latex.BasicFormatter
Base class for formatting table cells in a TableBuilder.

Generally a formatter will also provide methods for turning input data into fancified LaTeX output that can be
used by the column’s “data function”.

colinfo(builder)
Return (nlcol, colspec, headprefix), where:

nlcol - The number of LaTeX columns encompassed by this logical column.

colspec - Its LaTeX column specification (None to force user to specify).

headprefix - Prefix applied before heading items in {} (e.g., “colhead”).

class pwkit.latex.BoolFormatter
Format booleans. Attributes truetext and falsetext set what shows up for true and false values, respectively.

colinfo(builder)
Return (nlcol, colspec, headprefix), where:

nlcol - The number of LaTeX columns encompassed by this logical column.

colspec - Its LaTeX column specification (None to force user to specify).

6.3. Outputting data in LaTeX format (pwkit.latex) 99

pwkit, Release 1.0.0

headprefix - Prefix applied before heading items in {} (e.g., “colhead”).

class pwkit.latex.LimitFormatter
Format measurements (cf pwkit.msmt) with nice-looking limit information. Specific uncertainty information is
discarded. The default formats do not involve fancy subscripts or superscripts, so row struts are not needed . . .
by default.

colinfo(builder)
Return (nlcol, colspec, headprefix), where:

nlcol - The number of LaTeX columns encompassed by this logical column.

colspec - Its LaTeX column specification (None to force user to specify).

headprefix - Prefix applied before heading items in {} (e.g., “colhead”).

class pwkit.latex.MaybeNumberFormatter(nplaces=1, align=’c’)
Format Python objects. If it’s a number, format it as such, without any fancy column alignment, but with a
specifiable number of decimal places. Otherwise, call latexify() on it.

colinfo(builder)
Return (nlcol, colspec, headprefix), where:

nlcol - The number of LaTeX columns encompassed by this logical column.

colspec - Its LaTeX column specification (None to force user to specify).

headprefix - Prefix applied before heading items in {} (e.g., “colhead”).

class pwkit.latex.Referencer
Accumulate a numbered list of bibtex references. Methods:

refkey(bibkey) Return a string that should be used to give a numbered reference to the given bibtex key. “this-
work” is handled specially.

dump() Return a string with citet{} commands identifing all of the numbered references.

Attributes:

thisworktext text referring to “this work”; defaults to that.

thisworkmarker special symbol used to denote “this work”; defaults to star.

Bibtex keys beginning with asterisks have the rest of their value used for the citation text, rather than
“citet{<key>}”.

class pwkit.latex.TableBuilder(label)
Build and then emit a nice deluxetable.

Methods:

addcol(headings, datafunc, formatter=None, colspec=None, numbering=’(%d)’) Define a logical column.

addnote(key, text) Define a table note that can appear in cells.

addhcline(headerrowix, logcolidx, latexdeltastart, latexdeltaend) Add a horizontal line between columns.

notemark(key) Return a tablenotemark{} command for the specified note key.

emit(stream, items) Write the table, with one row for each thing in items, to the stream.

If an item has an attribute tb_row_preamble, that text is written verbatim before that corresponding row is output.

Attributes:

environment The name of the latex environment to use, default “deluxetable”. You may want to specify “delux-
etable*”, or “mydeluxetable” if using a hacked package.

100 Chapter 6. Data input and output

pwkit, Release 1.0.0

label The latex reference label of the table. Mandatory.

note A note at the table footer (“tablecomments{}” in LaTeX).

preamble Commands for table preamble. See below.

refs Contents of the table References section.

title Table title. Default “Untitled table”.

widthspec Passed to tablewidth{}; default “0em” = auto-widen.

numbercols If True, number each column. This can be disabled on a col-by-col basis by calling addcol with
numbering set to False.

final_double_backslash If True, end the final table row with a ‘”’. AAStex6 requires this, giving an error about
a misplaced ‘omit’ if you don’t provide one. On the other hand, classic TeX tables look worse if you do
provide this.

Legal preamble commands are:

\rotate
\tablenum{<manual table identifier>}
\tabletypesize{}

The commands tablecaption, tablecolumns, tablehead, and tablewidth are handled specially.

If tablewidth{} is not provided, the table is set at full width, not its natural width, which is a lame default. The
default widthspec lets us auto-widen while providing a clear avenue to customizing the width.

addcol(headings, datafunc, formatter=None, colspec=None, numbering=’(%d)’)
Define a logical column. Arguments:

headings A string, or list of strings and WideHeaders. The headings are stacked vertically in the table
header section.

datafunc Return LaTeX for this cell. Call spec should be (item, [formatter, [tablebuilder]]).

formatter The formatter to use; defaults to a new BasicFormatter.

colspec The LaTeX column specification letters to use; defaults to ‘c’s.

numbering If non-False, a format for writing this column’s number; if False, no number is written.

addhcline(headerrowidx, logcolidx, latexdeltastart, latexdeltaend)
Adds a horizontal line below a limited range of columns in the header section. Arguments:

headerrowidx - The 0-based row number below which the line will be drawn; i.e. 0 means that the
line will be drawn below the first row of header cells.

logcolidx - The 0-based ‘logical’ column number relative to which the line will be placed; i.e. 1 means
that the line placement will be relative to the second column defined in an addcol() call.

latexdeltastart - The relative position at which to start drawing the line relative to that logical col-
umn, in LaTeX columns; typically going to be zero.

latexdeltaend - The relative position at which to finish drawing the line, in the standard Python non-
inclusive sense. I.e., if you want to underline two LaTeX columns, latexdeltaend = latexdeltastart +
2.

class pwkit.latex.UncertFormatter
Format measurements (cf. pwkit.msmt) with detailed uncertainty information, possibly including asymmetric
uncertainties. Because of the latter possibility, table rows have to be made extra-high to maintain evenness.

6.3. Outputting data in LaTeX format (pwkit.latex) 101

pwkit, Release 1.0.0

colinfo(builder)
Return (nlcol, colspec, headprefix), where:

nlcol - The number of LaTeX columns encompassed by this logical column.

colspec - Its LaTeX column specification (None to force user to specify).

headprefix - Prefix applied before heading items in {} (e.g., “colhead”).

class pwkit.latex.WideHeader(nlogcols, content, align=’c’)
Information needed for constructing wide table headers.

nlogcols - Number of logical columns consumed by this header. content - The LaTeX to insert for this header’s
content. align - The alignment of this header; default ‘c’.

Rendered as multicolumn{nlatex}{align}{content}, where nlatex is the number of LaTeX columns spanned by
this header – which may be larger than nlogcols if certain logical columns span multiple LaTeX columns.

pwkit.latex.latexify_l3col(obj, **kwargs)
Convert an object to special LaTeX for limit tables.

This conversion is meant for limit values in a table. The return value should span three columns. The first
column is the limit indicator: <, >, ~, etc. The second column is the whole part of the value, up until just before
the decimal point. The third column is the decimal point and the fractional part of the value, if present. If the
item being formatted does not fit this schema, it can be wrapped in something like ‘multicolumn{3}{c}{. . . }’.

pwkit.latex.latexify_n2col(x, nplaces=None, **kwargs)
Render a number into LaTeX in a 2-column format, where the columns split immediately to the left of the
decimal point. This gives nice alignment of numbers in a table.

pwkit.latex.latexify_u3col(obj, **kwargs)
Convert an object to special LaTeX for uncertainty tables.

This conversion is meant for uncertain values in a table. The return value should span three columns. The first
column ends just before the decimal point in the main number value, if it has one. It has no separation from the
second column. The second column goes from the decimal point until just before the “plus-or-minus” indicator.
The third column goes from the “plus-or-minus” until the end. If the item being formatted does not fit this
schema, it can be wrapped in something like ‘multicolumn{3}{c}{. . . }’.

pwkit.latex.latexify(obj, **kwargs)
Render an object in LaTeX appropriately.

6.4 Reading and writing data tables with types and uncertainties
(pwkit.tabfile)

pwkit.tabfile - I/O with typed tables of uncertain measurements.

Functions:

read - Read a typed table file. vizread - Read a headerless table file, with columns specified separately write - Write a
typed table file.

The table format is line-oriented text. Hashes denote comments. Initial lines of the form “colname = value” set
a column name that gets the same value for every item in the table. The header line is prefixed with an @ sign.
Subsequent lines are data rows.

pwkit.tabfile.read(path, tabwidth=8, **kwargs)
Read a typed tabular text file into a stream of Holders.

Arguments:

102 Chapter 6. Data input and output

pwkit, Release 1.0.0

path The path of the file to read.

tabwidth=8 The tab width to assume. Please don’t monkey with it.

mode=’rt’ The file open mode (passed to io.open()).

noexistok=False If True and the file is missing, treat it as empty.

**kwargs Passed to io.open ().

Returns a generator for a stream of pwkit.Holder‘s, each of which will contain ints, strings, or some kind of
measurement (cf ‘pwkit.msmt).

pwkit.tabfile.vizread(descpath, descsection, tabpath, tabwidth=8, **kwargs)
Read a headerless tabular text file into a stream of Holders.

Arguments:

descpath The path of the table description ini file.

descsection The section in the description file to use.

tabpath The path to the actual table data.

tabwidth=8 The tab width to assume. Please don’t monkey with it.

mode=’rt’ The table file open mode (passed to io.open()).

noexistok=False If True and the file is missing, treat it as empty.

**kwargs Passed to io.open ().

Returns a generator of a stream of pwkit.Holder‘s, each of which will contain ints, strings, or some kind of
measurement (cf ‘pwkit.msmt). In this version, the table file does not contain a header, as seen in Vizier data
files. The corresponding section in the description ini file has keys of the form “colname = <start> <end>
[type]”, where <start> and <end> are the 1-based character numbers defining the column, and [type] is an
optional specified of the measurement type of the column (one of the usual b, i, f, u, Lu, Pu).

pwkit.tabfile.write(stream, items, fieldnames, tabwidth=8)
Write a typed tabular text file to the specified stream.

Arguments:

stream The destination stream.

items An iterable of items to write. Two passes have to be made over the items (to discover the needed column
widths), so this will be saved into a list.

fieldnames Either a list of field name strings, or a single string. If the latter, it will be split into a list with
.split().

tabwidth=8 The tab width to use. Please don’t monkey with it.

Returns nothing.

6.5 An “ini” file format with typed, uncertain data (pwkit.tinifile)

pwkit.tinifile - Dealing with typed ini-format files full of measurements.

Functions:

read Generate pwkit.Holder instances of measurements from an ini-format file.

write Write pwkit.Holder instances of measurements to an ini-format file.

6.5. An “ini” file format with typed, uncertain data (pwkit.tinifile) 103

pwkit, Release 1.0.0

read_stream Lower-level version; only operates on streams, not path names.

write_stream Lower-level version; only operates on streams, not path names.

pwkit.tinifile.write_stream(stream, holders, defaultsection=None, extrapos=(), sha1sum=False,
**kwargs)

extrapos is basically a hack for multi-step processing. We have some flux measurements that are computed from
luminosities and distances. The flux value is therefore an unwrapped Uval, which doesn’t retain memory of any
positivity constraint it may have had. Therefore, if we write out such a value using this routine, we may get
something like fx:u = 1pm1, and the next time it’s read in we’ll get negative fluxes. Fields listed in extrapos will
have a “P” constraint added if they are imprecise and their typetag is just “f” or “u”.

6.6 Converting Unicode to LaTeX notation (pwkit.
unicode_to_latex)

unicode_to_latex - what it says

Provides unicode_to_latex(u), unicode_to_latex_bytes(u), and
unicode_to_latex_string(u).

unicode_to_latex_bytes returns ASCII bytes that can be fed to LaTeX to reproduce the Unicode string ‘u’ as
closely as possible.

unicode_to_latex_string returns a Unicode string rather than bytes.

unicode_to_latex returns the str type: bytes on Python 2, Unicode on Python 3.

104 Chapter 6. Data input and output

CHAPTER 7

External Software Environments

This documentation has a lot of stubs.

7.1 CASA (pwkit.environments.casa)

The pwkit.environments.casa package provides convenient interfaces to the CASA package for analysis of
radio interferometric data. In particular, it makes it much easier to build scripts and modules for automated data
analysis.

This module does not require a full CASA installation, but it does depend on the availability of the casac Python
module, which provides Python access to the C++ code that drives most of CASA’s low-level functionality. By far the
easiest way to obtain this module is to use an installation of Anaconda or Miniconda Python and install the casa-python
package provided by Peter Williams, which builds on the infrastructure provided by the conda-forge project.

Alternatively, you can try to install CASA and extract the casac module from its files as described here. Or you
can try to install this module inside the Python environment bundled with CASA. Or you can compile and underlying
CASA C++ code yourself. But, using the pre-built packages is going to be by far the simplest approach and is strongly
recommended.

7.1.1 Outline of functionality

This package provides several kinds of functionality.

• The pwkit.environments.casa.tasks module provides straightforward programmatic access to a
wide selection of commonly-used CASA takes like gaincal and setjy.

• pwkit installs a command-line program, casatask, which provides command-line access to the tasks imple-
mented in the tasks module, much as MIRIAD tasks can be driven straight from the command line.

• The pwkit.environments.casa.util module provides the lowest-level access to the “tool” structures
defined in the C++ code.

• Several modules like pwkit.environments.casa.dftphotom provide original analysis features;
dftphotom extracts light curves of point sources from calibrated visibility data.

105

https://casa.nrao.edu/
http://conda.pydata.org/miniconda.html
https://anaconda.org/pkgw-forge/casa-python
https://conda-forge.github.io/
https://newton.cx/~peter/2014/02/casa-in-python-without-casapy/

pwkit, Release 1.0.0

• If you do have a full CASA installation available on your compuer, the pwkit.environments.casa.
scripting module allows you to drive it from Python code in a way that allows you to analyze its output,
check for error conditions, and so on. This is useful for certain features that are not currently available in the
tasks module.

7.1.2 More detailed documentation

Programmatic access to CASA tasks (pwkit.environments.casa.tasks)

The way that the official casapy code is written, it’s basically impossible to import its tasks into a straight-Python
environment. (Trust me, I’ve tried.) So, this module more-or-less duplicates lots of CASA code. But this module also
tries to provide to provide saner semantics and interfaces.

The goal is to make task-like functionality available in a real Python library, with no side effects, so that data processing
can be scripted tractably. These tasks are also accessible through the casatask command line program provided
with pwkit.

Example programmatic usage:

from pwkit.environments.casa import tasks

vis_path = 'mydataset.ms'

A basic listobs:

for output_line in tasks.listobs(vis_path):
print(output_line)

Split a dataset with filtering and averaging:

cfg = tasks.SplitConfig()
cfg.vis = vis_path
cfg.out = 'new-' + vis_path
cfg.spw = '0~8'
cfg.timebin = 60 # seconds
tasks.split(cfg)

This module implements the following analysis tasks. Some of them are extremely close to CASA tasks of the same
name; some are streamlined; some are not provided in CASA at all.

• applycal — use calibration tables to generate CORRECTED_DATA from DATA.

• bpplot — plot a bandpass calibration table; an order of magnitude faster than the CASA equivalent.

• clearcal — fill calibration tables with default.

• concat — concatenate two data sets.

• delcal — delete the MODEL_DATA and/or CORRECTED_DATA MS columns.

• elplot — plot elevations of the fields observed in an MS.

• extractbpflags — extract a table of channel flags from a bandpass calibration table.

• flagcmd — apply flags to an MS using a generic infrastructure.

• flaglist — apply a textual list of flag commands to an MS.

• flagzeros — flag zero-valued visibilites in an MS.

• fluxscale — use a flux density model to absolutely scale a gain calibration table.

106 Chapter 7. External Software Environments

pwkit, Release 1.0.0

• ft — generate model visibilities from an image.

• gaincal — solve for a gain calibration table.

• gencal — generate various calibration tables that do not depend on the actual visibility data in an MS.

• getopacities — estimate atmospheric opacities for an observation.

• gpdetrend — remove long-term phase trends from a complex-gain calibration table.

• gpplot — plot a complex-gain calibration table in a sensible way.

• image2fits — convert a CASA image to FITS format.

• importalma — convert an ALMA SDM file to MS format.

• importevla — convert an EVLA SDM file to MS format.

• listobs — print out the basic observational characteristics in an MS data set.

• listsdm — print out the basic observational characteristics in an SDM data set.

• mfsclean — image calibrated data using MFS and CLEAN.

• mjd2date — convert an MJD to a date in the textual format used by CASA.

• mstransform — perform basic streaming transforms on an MS data, such as time averaging, Hanning smoothing,
and/or velocity resampling.

• plotants — plot the positions of the antennas used in an MS.

• plotcal — plot a complex-gain calibration table using CASA’s default infrastructure.

• setjy — insert absolute flux density calibration information into a dataset.

• split — extract a subset of an MS.

• tsysplot — plot how the typical system temperature varies over time.

• uvsub — fill CORRECTED_DATA with DATA - MODEL_DATA.

• xyphplot — plot a frequency-dependent X/Y phase calibration table.

The following tasks are provided by the associated command line program, casatask, but do not have dedicated
functions in this module.

• closures — see closures.

• delmod — this is too trivial to need its own function.

• dftdynspec — see dftdynspec.

• dftphotom — see dftphotom.

• dftspect — see dftspect.

• flagmanager — more specialized functions should be used in code.

• gpdiagnostics — see gpdiagnostics.

• polmodel — see polmodel.

• spwglue — see spwglue.

Tasks

This documentation is automatically generated from text that is targeted at the command-line tasks, and so may read a
bit strangely at times.

7.1. CASA (pwkit.environments.casa) 107

pwkit, Release 1.0.0

applycal

pwkit.environments.casa.tasks.applycal(cfg)
The applycal task.

cfg A ApplycalConfig object.

This function runs the applycal task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the ApplycalConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.ApplycalConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.applycal(cfg)

This task may also be invoked through the command line, as casatask applycal. Run casatask
applycal --help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.ApplycalConfig
This is a configuration object for the applycal task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to applycal().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask applycal. “Keywords” refer attributes of this structure, “comma-separated lists” should be-
come Python lists, and so on.

Fill in the CORRECTED_DATA column of a visibility dataset using the raw data and a set of calibration tables.

vis= The MS to modify

calwt= Write out calibrated weights as well as calibrated visibilities. Default: false

Pre-applied calibrations

gaintable= Comma-separated list of calibration tables to apply on-the-fly before solving

gainfield= SEMICOLON-separated list of field selections to apply for each gain table. If there are fewer items
than there are gaintable items, the list is padded with blank items, implying no selection by field.

interp= COMMA-separated list of interpolation types to use for each gain table. If there are fewer items, the
list is padded with ‘linear’ entries. Allowed values: nearest linear cubic spline

spwmap= SEMICOLON-separated list of spectral window mappings for each existing gain table; each record
is a COMMA-separated list of integers. For the i’th spw in the dataset, spwmap[i] specifies the record in
the gain table to use. For instance [0, 0, 1, 1] maps four spws in the UV data to just two spectral windows
in the preexisting gain table.

opacity= Comma-separated list of opacities in nepers. One for each spw; if there are more spws than entries,
the last entry is used for the remaining spws.

gaincurve= Whether to apply VLA-specific built in gain curve correction (default: false)

parang= Whether to apply parallactic angle rotation correction (default: false)

Standard data selection keywords This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array, correlation, field, intent,
observation, scan, spw, taql, timerange, uvrange.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

108 Chapter 7. External Software Environments

pwkit, Release 1.0.0

bpplot

pwkit.environments.casa.tasks.bpplot(cfg)
The bpplot task.

cfg A BpplotConfig object.

This function runs the bpplot task. For documentation of the general functionality of this task and the param-
eters it takes, see the documentation for the BpplotConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.BpplotConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.bpplot(cfg)

This task may also be invoked through the command line, as casatask bpplot. Run casatask bpplot
--help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.BpplotConfig
This is a configuration object for the bpplot task. This object contains no methods. Rather it contains place-
holders (and default values) for parameters that can be passed to bpplot().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask bpplot. “Keywords” refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Plot a bandpass calibration table. Currently, the supported format is a series of pages showing amplitude and
phase against normalized channel number, with each page showing a particular antenna and polarization. Po-
larizations are always reported as “R” and “L” since the relevant information is not stored within the bandpass
data set.

This task also works well to plot frequency-dependent polarimetric leakage calibration tables.

caltable=MS The input calibration Measurement Set

dest=PATH If specified, plots are saved to this file – the format is inferred from the extension, which must
allow multiple pages to be saved. If unspecified, the plots are displayed using a Gtk3 backend.

dims=WIDTH,HEIGHT If saving to a file, the dimensions of a each page. These are in points for vector
formats (PDF, PS) and pixels for bitmaps (PNG). Defaults to 1000, 600.

margins=TOP,RIGHT,LEFT,BOTTOM If saving to a file, the plot margins in the same units as the dims.
The default is 4 on every side.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

clearcal

pwkit.environments.casa.tasks.clearcal(vis, weightonly=False)
Fill the imaging and calibration columns (MODEL_DATA, CORRECTED_DATA, IMAGING_WEIGHT) of each
measurement set with default values, creating the columns if necessary.

vis (string) Path to the input measurement set

weightonly (boolean) If true, just create the IMAGING_WEIGHT column; do not fill in the visibility data
columns.

7.1. CASA (pwkit.environments.casa) 109

pwkit, Release 1.0.0

If you want to reset calibration models, these days you probably want delmod_cli(). If you want to quickly
make the columns go away, you probably want delcal().

Example:

from pwkit.environments.casa import tasks
tasks.clearcal('myvis.ms')

concat

pwkit.environments.casa.tasks.concat(invises, outvis, timesort=False)
Concatenate visibility measurement sets.

invises (list of str) Paths to the input measurement sets

outvis (str) Path to the output measurement set.

timesort (boolean) If true, sort the output in time after concatenation.

Example:

from pwkit.environments.casa import tasks
tasks.concat(['epoch1.ms', 'epoch2.ms'], 'combined.ms')

delcal

pwkit.environments.casa.tasks.delcal(mspath)
Delete the MODEL_DATA and CORRECTED_DATA columns from a measurement set.

mspath (str) The path to the MS to modify

Example:

from pwkit.environments.casa import tasks
tasks.delcal('dataset.ms')

delmod

pwkit.environments.casa.tasks.delmod_cli(argv, alter_logger=True)
Command-line access to delmod functionality.

The delmod task deletes “on-the-fly” model information from a Measurement Set. It is so easy to implement
that a standalone function is essentially unnecessary. Just write:

from pwkit.environments.casa import util
cb = util.tools.calibrater()
cb.open('datasaet.ms', addcorr=False, addmodel=False)
cb.delmod(otf=True, scr=False)
cb.close()

If you want to delete the scratch columns, use delcal(). If you want to clear the scratch columns, use
clearcal().

110 Chapter 7. External Software Environments

pwkit, Release 1.0.0

elplot

pwkit.environments.casa.tasks.elplot(cfg)
The elplot task.

cfg A ElplotConfig object.

This function runs the elplot task. For documentation of the general functionality of this task and the param-
eters it takes, see the documentation for the ElplotConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.ElplotConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.elplot(cfg)

This task may also be invoked through the command line, as casatask elplot. Run casatask elplot
--help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.ElplotConfig
This is a configuration object for the elplot task. This object contains no methods. Rather it contains place-
holders (and default values) for parameters that can be passed to elplot().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask elplot. “Keywords” refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Plot elevations of fields observed in a MeasurementSet.

vis=MS The input Measurement Set.

dest=PATH If specified, plots are saved to this file – the format is inferred from the extension, which must
allow multiple pages to be saved. If unspecified, the plots are displayed using a Gtk3 backend.

dims=WIDTH,HEIGHT If saving to a file, the dimensions of a each page. These are in points for vector
formats(PDF, PS) and pixels for bitmaps(PNG). Defaults to 1000, 600.

margins=TOP,RIGHT,LEFT,BOTTOM If saving to a file, the plot margins in the same units as the dims.
The default is 4 on every side.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

extractbpflags

pwkit.environments.casa.tasks.extractbpflags(calpath, deststream)
Make a flags file out of a bandpass calibration table

calpath (str) The path to the bandpass calibration table

deststream (stream-like object, e.g. an opened file) Where to write the flags data

Below is documentation written for the command-line interface to this functionality:

When CASA encounters flagged channels in bandpass calibration tables, it interpolates over them as best it
can – even if interp=’<any>,nearest’. This means that if certain channels are unflagged in some target data but
entirely flagged in your BP cal, they’ll get multiplied by some number that may or may not be reasonable, not
flagged. This is scary if, for instance, you’re using an automated system to find RFI, or you flag edge channels
in some uneven way.

7.1. CASA (pwkit.environments.casa) 111

pwkit, Release 1.0.0

This script writes out a list of flagging commands corresponding to the flagged channels in the bandpass table
to ensure that the data without bandpass solutions are flagged.

Note that, because we can’t select by antpol, we can’t express a situation in which the R and L bandpass solutions
have different flags. But in CASA the flags seem to always be the same.

We’re assuming that the channelization of the bandpass solution and the data are the same.

flagcmd

pwkit.environments.casa.tasks.flagcmd(cfg)
The flagcmd task.

cfg A FlagcmdConfig object.

This function runs the flagcmd task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the FlagcmdConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.FlagcmdConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.flagcmd(cfg)

This task may also be invoked through the command line, as casatask flagcmd. Run casatask
flagcmd --help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.FlagcmdConfig
This is a configuration object for the flagcmd task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to flagcmd().

The following documentation is written to target the command-line version of this task, which may be in-
voked as casatask flagcmd. “Keywords” refer attributes of this structure, “comma-separated lists” should
become Python lists, and so on.

Flag data using auto-generated lists of flagging commands.

flaglist

pwkit.environments.casa.tasks.flaglist(cfg)
The flaglist task.

cfg A FlaglistConfig object.

This function runs the flaglist task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the FlaglistConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.FlaglistConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.flaglist(cfg)

This task may also be invoked through the command line, as casatask flaglist. Run casatask
flaglist --help to see another version of the documentation provided below.

112 Chapter 7. External Software Environments

pwkit, Release 1.0.0

class pwkit.environments.casa.tasks.FlaglistConfig
This is a configuration object for the flaglist task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to flaglist().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask flaglist. “Keywords” refer attributes of this structure, “comma-separated lists” should be-
come Python lists, and so on.

Flag data using a list of flagging commands stored in a text file. This is approximately equivalent to
‘flagcmd(vis=, inpfile=, inpmode=’list’, flagbackup=False)’.

This implementation must emulate the CASA modules that load up the flagging commands and may not be
precisely compatible with the CASA version.

flagmanager

pwkit.environments.casa.tasks.flagmanager_cli(argv, alter_logger=True)
Command-line access to flagmanager functionality.

The flagmanager task manages tables of flags associated with measurement sets. Its features are easy to
implement that a standalone library function is essentially unnecessary. See the source code to this function for
the tool calls that implement different parts of the flagmanager functionality.

flagzeros

pwkit.environments.casa.tasks.flagzeros(cfg)
The flagzeros task.

cfg A FlagzerosConfig object.

This function runs the flagzeros task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the FlagzerosConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.FlagzerosConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.flagzeros(cfg)

This task may also be invoked through the command line, as casatask flagzeros. Run casatask
flagzeros --help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.FlagzerosConfig
This is a configuration object for the flagzeros task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to flagzeros().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask flagzeros. “Keywords” refer attributes of this structure, “comma-separated lists” should
become Python lists, and so on.

Flag zero data points in the specified data column.

7.1. CASA (pwkit.environments.casa) 113

pwkit, Release 1.0.0

fluxscale

pwkit.environments.casa.tasks.fluxscale(cfg)
The fluxscale task.

cfg A FluxscaleConfig object.

This function runs the fluxscale task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the FluxscaleConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.FluxscaleConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.fluxscale(cfg)

This task may also be invoked through the command line, as casatask fluxscale. Run casatask
fluxscale --help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.FluxscaleConfig
This is a configuration object for the fluxscale task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to fluxscale().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask fluxscale. “Keywords” refer attributes of this structure, “comma-separated lists” should
become Python lists, and so on.

Write a new calibation table determining the fluxes for intermediate calibrators from known reference sources

vis= The visibility dataset.(Shouldn’t be needed, but . . .)

caltable= The preexisting calibration table with gains associated with more than one source.

fluxtable= The path of a new calibration table to create

reference= Comma-separated names of sources whose model fluxes are assumed to be well-known.

transfer= Comma-separated names of sources whose fluxes should be computed from the gains.

listfile= If specified, write out flux information to this path.

append= Boolean, default false. If true, append to existing cal table rather than overwriting.

refspwmap= Comma-separated list of integers. If gains are only available for some spws, map from the data to
the gains. For instance, refspwmap=1,1,3,3 means that spw 0 will have its flux calculated using the gains
for spw 1.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

ft

pwkit.environments.casa.tasks.ft(cfg)
The ft task.

cfg A FtConfig object.

This function runs the ft task. For documentation of the general functionality of this task and the parameters
it takes, see the documentation for the FtConfig object below. Example:

114 Chapter 7. External Software Environments

pwkit, Release 1.0.0

from pwkit.environments.casa import tasks

cfg = tasks.FtConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.ft(cfg)

This task may also be invoked through the command line, as casatask ft. Run casatask ft --help
to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.FtConfig
This is a configuration object for the ft task. This object contains no methods. Rather it contains placeholders
(and default values) for parameters that can be passed to ft().

The following documentation is written to target the command-line version of this task, which may be in-
voked as casatask ft. “Keywords” refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Fill in(or update) the MODEL_DATA column of a Measurement Set with visibilities computed from an image
or list of components.

vis= The path to the measurement set

model= Comma-separated list of model images, each giving successive Taylor terms of a spectral model for
each source.(It’s fine to have just one model, and this will do what you want.) The reference frequency for
the Taylor expansion is taken from the first image.

complist= Path to a CASA ComponentList Measurement Set to use in the modeling. I don’t know what happens
if you specify both this and “model”. They might both get applied?

incremental= Bool, default false, meaning that the MODEL_DATA column will be replaced with the new
values computed here. If true, the new values are added to whatever’s already in MODEL_DATA.

wprojplanes= Optional integer. If provided, W-projection will be used in the computation of the model visi-
bilities, using the specified number of planes. Note that this does make a difference even now that this task
only embeds information in a MS to enable later on-the-fly computation of the UV model.

usescratch= Foo.

Standard data selection keywords This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array, correlation, field, intent,
observation, scan, spw, taql, timerange, uvrange.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

gaincal

pwkit.environments.casa.tasks.gaincal(cfg)
The gaincal task.

cfg A GaincalConfig object.

This function runs the gaincal task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the GaincalConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.GaincalConfig()

(continues on next page)

7.1. CASA (pwkit.environments.casa) 115

pwkit, Release 1.0.0

(continued from previous page)

cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.gaincal(cfg)

This task may also be invoked through the command line, as casatask gaincal. Run casatask
gaincal --help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.GaincalConfig
This is a configuration object for the gaincal task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to gaincal().

The following documentation is written to target the command-line version of this task, which may be in-
voked as casatask gaincal. “Keywords” refer attributes of this structure, “comma-separated lists” should
become Python lists, and so on.

Compute calibration parameters from data. Encompasses the functionality of CASA tasks ‘gaincal’ and ‘band-
pass’.

vis= Input dataset

caltable= Output calibration table (can exist if append=True)

gaintype=

Kind of gain solution: G - gains per poln and spw(default) T - like G, but one value for all polns
GSPLINE - like G, with a spline fit. “Experimental” B - bandpass BPOLY - bandpass with poly-
nomial fit. “Somewhat experimental” K - antenna-based delays KCROSS - global cross-hand delay ;
use parang=True D - solve for instrumental leakage Df - above with per-channel leakage terms D+QU
- solve for leakage and apparent source polarization Df+QU - above with per-channel leakage terms X
- solve for absolute position angle phase term Xf - above with per-channel phase terms D+X - D and
X. “Not normally done” Df+X - Df and X. Presumably also not normally done. XY+QU - ? XYf+QU
- ?

calmode= What parameters to solve for: amplitude(“a”), phase(“p”), or both (“ap”). Default is “ap”. Not used
in bandpass solutions.

solint= Solution interval; this is an upper bound, but solutions will be broken across certain boundaries accord-
ing to “combine”. ‘inf’ - solutions as long as possible(the default) ‘int’ - one solution per integration (str)
- a specific time with units(e.g. ‘5min’) (number) - a specific time in seconds

combine= Comma-separated list of boundary types; solutions will NOT be broken across these boundaries.
Types are: field, scan, spw.

refant= Comma-separated list of reference antennas in decreasing priority order.

solnorm= Normalize solution amplitudes to 1 after solving (only applies to gaintypes G, T, B). Also normalizes
bandpass phases to zero when solving for bandpasses. Default: false.

append= Whether to append solutions to an existing table. If the table exists and append=False, the table is
overwritten! (Default: false)

Pre-applied calibrations

gaintable= Comma-separated list of calibration tables to apply on-the-fly before solving

gainfield= SEMICOLON-separated list of field selections to apply for each gain table. If there are fewer items
than there are gaintable items, the list is padded with blank items, implying no selection by field.

interp= COMMA-separated list of interpolation types to use for each gain table. If there are fewer items, the
list is padded with ‘linear’ entries. Allowed values: nearest linear cubic spline

116 Chapter 7. External Software Environments

pwkit, Release 1.0.0

spwmap= SEMICOLON-separated list of spectral window mappings for each existing gain table; each record
is a COMMA-separated list of integers. For the i’th spw in the dataset, spwmap[i] specifies the record in
the gain table to use. For instance [0, 0, 1, 1] maps four spws in the UV data to just two spectral windows
in the preexisting gain table.

opacity= Comma-separated list of opacities in nepers. One for each spw; if there are more spws than entries,
the last entry is used for the remaining spws.

gaincurve= Whether to apply VLA-specific built in gain curve correction (default: false)

parang= Whether to apply parallactic angle rotation correction (default: false)

Low-level parameters

minblperant= Number of baselines for each ant in order to solve (default: 4)

minsnr= Min. SNR for acceptable solutions (default: 3.0)

preavg= Interval for pre-averaging data within each solution interval, in seconds. Default is -1, meaning not to
pre-average.

smodel=I,Q,U,V Full-stokes point source model to use, if none is embedded in the vis file.

Standard data selection keywords This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array, correlation, field, intent,
observation, scan, spw, taql, timerange, uvrange.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

gencal

pwkit.environments.casa.tasks.gencal(cfg)
The gencal task.

cfg A GencalConfig object.

This function runs the gencal task. For documentation of the general functionality of this task and the param-
eters it takes, see the documentation for the GencalConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.GencalConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.gencal(cfg)

This task may also be invoked through the command line, as casatask gencal. Run casatask gencal
--help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.GencalConfig
This is a configuration object for the gencal task. This object contains no methods. Rather it contains place-
holders (and default values) for parameters that can be passed to gencal().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask gencal. “Keywords” refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Generate certain calibration tables that don’t need to be solved for from the actual data.

7.1. CASA (pwkit.environments.casa) 117

pwkit, Release 1.0.0

If you want to generate antenna position corrections for Jansky VLA data, you can just specify caltype=antpos
and leave off the “parameter” keyword. This will cause the task will talk to an NRAO server and automati-
cally download the correct position corrections. Other telescopes do not support this functionality, but if you
can obtain the position corrections, you can use the “antenna” and “parameter” keywords to build the desired
calibration table manually.

vis= Input dataset

caltable= Output calibration table (appended to if preexisting)

caltype= The kind of table to generate: amp - generic amplitude correction; needs parameter(s) ph - generic
phase correction; needs parameter(s) sbd - single-band delay: phase slope for each SPW; needs param-
eter(s) mbd - multi-band delay: phase slope for all SPWs; needs parameter(s) antpos - antenna position
corrections in ITRF; what you want; accepts parameter(s) antposvla - antenna position corrections in VLA
frame; not what you want; accepts parameter(s) tsys - tsys from ALMA syscal table swpow - EVLA
switched-power and requantizer gains(“experimental”) opac - tropospheric opacity; needs parameter gc -
(E)VLA elevation-dependent gain curve eff - (E)VLA antenna efficiency correction gceff - combination
of “gc” and “eff” rq - EVLA requantizer gains; not what you want swp/rq - EVLA switched-power gains
divided by “rq”; not what you want

parameter= Custom parameters for various caltypes. Dimensionality depends on selections applied. amp -
gain; dimensionless ph - phase; degrees sbd - delay; nanosec mbd - delay; nanosec antpos - position
offsets; ITRF meters(or look up automatically for EVLA if unspecified) antposvla - position offsets; meters
in VLA reference frame opac - opacity; dimensionless(nepers?)

antenna= Selection keyword, governing which solutions to generate and controlling shape of “parameter” key-
word.

pol= Analogous to “antenna”

spw= Analogous to “antenna”

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

getopacities

pwkit.environments.casa.tasks.getopacities(ms, plotdest)

gpdetrend

pwkit.environments.casa.tasks.gpdetrend(cfg)
The gpdetrend task.

cfg A GpdetrendConfig object.

This function runs the gpdetrend task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the GpdetrendConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.GpdetrendConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.gpdetrend(cfg)

This task may also be invoked through the command line, as casatask gpdetrend. Run casatask
gpdetrend --help to see another version of the documentation provided below.

118 Chapter 7. External Software Environments

pwkit, Release 1.0.0

class pwkit.environments.casa.tasks.GpdetrendConfig
This is a configuration object for the gpdetrend task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to gpdetrend().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask gpdetrend. “Keywords” refer attributes of this structure, “comma-separated lists” should
become Python lists, and so on.

Remove long-term phase trends from a complex-gain calibration table. For each antenna/spw/pol, the complex
gains are divided into separate chunks(e.g., the intention is for one chunk for each visit to the complex-gain
calibrator). The mean phase within each chunk is divided out. The effect is to remove long-term phase trends
from the calibration table, but preserve short-term ones.

caltable=MS The input calibration Measurement Set

maxtimegap=int Measured in minutes. Gaps between solutions of this duration or longer will lead to a new
segment being considered. Default is four times the smallest time gap seen in the data set.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

gpplot

pwkit.environments.casa.tasks.gpplot(cfg)
The gpplot task.

cfg A GpplotConfig object.

This function runs the gpplot task. For documentation of the general functionality of this task and the param-
eters it takes, see the documentation for the GpplotConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.GpplotConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.gpplot(cfg)

This task may also be invoked through the command line, as casatask gpplot. Run casatask gpplot
--help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.GpplotConfig
This is a configuration object for the gpplot task. This object contains no methods. Rather it contains place-
holders (and default values) for parameters that can be passed to gpplot().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask gpplot. “Keywords” refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Plot a gain calibration table. Currently, the supported format is a series of pages showing amplitude and phase
against time, with each page showing a particular antenna and polarization. Polarizations are always reported as
“R” and “L” since the relevant information is not stored within the bandpass data set.

caltable=MS The input calibration Measurement Set

dest=PATH If specified, plots are saved to this file – the format is inferred from the extension, which must
allow multiple pages to be saved. If unspecified, the plots are displayed using a Gtk3 backend.

dims=WIDTH,HEIGHT If saving to a file, the dimensions of a each page. These are in points for vector
formats(PDF, PS) and pixels for bitmaps(PNG). Defaults to 1000, 600.

7.1. CASA (pwkit.environments.casa) 119

pwkit, Release 1.0.0

margins=TOP,RIGHT,LEFT,BOTTOM If saving to a file, the plot margins in the same units as the dims.
The default is 4 on every side.

maxtimegap=10 Solutions separated by more than this number of minutes will be drawn with separate lines
for clarity.

mjdrange=START,STOP If specified, gain solutions outside of the MJDs STOP and START will be ignored.

phaseonly=false If True, plot only phases, and not amplitudes.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

image2fits

pwkit.environments.casa.tasks.image2fits(mspath, fitspath, velocity=False, optical=False,
bitpix=-32, minpix=0, maxpix=-1, over-
write=False, dropstokes=False, stokeslast=True,
history=True, **kwargs)

Convert an image in MS format to FITS format.

mspath (str) The path to the input MS.

fitspath (str) The path to the output FITS file.

velocity (boolean) (To be documented.)

optical (boolean) (To be documented.)

bitpix (integer) (To be documented.)

minpix (integer) (To be documented.)

maxpix (integer) (To be documented.)

overwrite (boolean) Whether the task is allowed to overwrite an existing destination file.

dropstokes (boolean) Whether the “Stokes” (polarization) axis of the image should be dropped.

stokeslast (boolean) Whether the “Stokes” (polarization) axis of the image should be placed as the last (inner-
most?) axis of the image cube.

history (boolean) (To be documented.)

**kwargs Forwarded on to the tofits function of the CASA image tool.

importalma

pwkit.environments.casa.tasks.importalma(asdm, ms)
Convert an ALMA low-level ASDM dataset to Measurement Set format.

asdm (str) The path to the input ASDM dataset.

ms (str) The path to the output MS dataset.

This implementation automatically infers the value of the “tbuff” parameter.

Example:

from pwkit.environments.casa import tasks
tasks.importalma('myalma.asdm', 'myalma.ms')

120 Chapter 7. External Software Environments

pwkit, Release 1.0.0

importevla

pwkit.environments.casa.tasks.importevla(asdm, ms)
Convert an EVLA low-level SDM dataset to Measurement Set format.

asdm (str) The path to the input ASDM dataset.

ms (str) The path to the output MS dataset.

This implementation automatically infers the value of the “tbuff” parameter.

Example:

from pwkit.environments.casa import tasks
tasks.importevla('myvla.sdm', 'myvla.ms')

listobs

pwkit.environments.casa.tasks.listobs(vis)
Textually describe the contents of a measurement set.

vis (str) The path to the dataset.

Returns A generator of lines of human-readable output

Errors can only be detected by looking at the output. Example:

from pwkit.environments.casa import tasks

for line in tasks.listobs('mydataset.ms'):
print(line)

listsdm

pwkit.environments.casa.tasks.listsdm(sdm, file=None)
Generate a standard “listsdm” listing of(A)SDM dataset contents.

sdm (str) The path to the (A)SDM dataset to parse

file (stream-like object, such as an opened file) Where to print the human-readable listing. If unspecified, re-
sults go to sys.stdout.

Returns A dictionary of information about the dataset. Contents not yet documented.

Example:

from pwkit.environments.casa import tasks
tasks.listsdm('myalmaa.asdm')

This code based on CASA’s task_listsdm.py, with this version info:

v1.0: 2010.12.07, M. Krauss
v1.1: 2011.02.23, M. Krauss: added functionality for ALMA data
#
Original code based on readscans.py, courtesy S. Meyers

7.1. CASA (pwkit.environments.casa) 121

https://docs.python.org/3/library/sys.html#sys.stdout

pwkit, Release 1.0.0

mfsclean

pwkit.environments.casa.tasks.mfsclean(cfg)
The mfsclean task.

cfg A MfscleanConfig object.

This function runs the mfsclean task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the MfscleanConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.MfscleanConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.mfsclean(cfg)

This task may also be invoked through the command line, as casatask mfsclean. Run casatask
mfsclean --help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.MfscleanConfig
This is a configuration object for the mfsclean task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to mfsclean().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask mfsclean. “Keywords” refer attributes of this structure, “comma-separated lists” should be-
come Python lists, and so on.

Drive the CASA imager with a very restricted set of options.

For W-projection, set ftmachine=’wproject’ and wprojplanes=64(or so).

vis= Input visibility MS

imbase= Base name of output files. We create files named “imbaseEXT” where EXT is all of “mask”, “mod-
elTT”, “imageTT”, “residualTT”, and “psfTT”, and TT is empty if nterms = 1, and “ttN.” otherwise.

cell = 1 [arcsec] ftmachine = ‘ft’ or ‘wproject’ gain = 0.1 imsize = 256,256 mask = (blank) or path of CASA-
format region text file niter = 500 nterms = 1 phasecenter = (blank) or ‘J2000 12h34m56.7 -12d34m56.7’ reffreq
= 0 [GHz] stokes = I threshold = 0 [mJy] weighting = ‘briggs’(robust=0.5) or ‘natural’ wprojplanes = 1

Standard data selection keywords This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array, correlation, field, intent,
observation, scan, spw, taql, timerange, uvrange.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

mjd2date

pwkit.environments.casa.tasks.mjd2date(mjd, precision=3)
Convert an MJD to a data string in the format used by CASA.

mjd (numeric) An MJD value in the UTC timescale.

precision (integer, default 3) The number of digits of decimal precision in the seconds portion of the returned
string

Returns A string representing the input argument in CASA format: YYYY/MM/DD/HH:MM:SS.SSS.

Example:

122 Chapter 7. External Software Environments

pwkit, Release 1.0.0

from pwkit.environment.casa import tasks
print(tasks.mjd2date(55555))
yields '2010/12/25/00:00:00.000'

mstransform

pwkit.environments.casa.tasks.mstransform(cfg)
The mstransform task.

cfg A MstransformConfig object.

This function runs the mstransform task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the MstransformConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.MstransformConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.mstransform(cfg)

This task may also be invoked through the command line, as casatask mstransform. Run casatask
mstransform --help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.MstransformConfig
This is a configuration object for the mstransform task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to mstransform().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask mstransform. “Keywords” refer attributes of this structure, “comma-separated lists” should
become Python lists, and so on.

vis= Input visibility MS

out= Output visibility MS

datacolumn=corrected The data column on which to operate. Comma-separated list of: data, model,
corrected, float_data, lag_data, all

realmodelcol=False If true, turn a virtual model column into a real one.

keepflags=True If false, discard completely-flagged rows.

usewtspectrum=False If true, fill in a WEIGHT_SPECTRUM column in the output data set.

combinespws=False If true, combine spectral windows

chanaverage=False If true, average the data in frequency. NOT WIRED UP.

hanning=False If true, Hanning smooth the data spectrally to remove Gibbs ringing.

regridms=False If true, put the data on a new spectral window structure or reference frame.

timebin=<seconds> If specified, time-average the visibilities with the specified binning.

timespan=<undefined> Allow averaging to span over potential discontinuities in the data set. Comma-
separated list of options; allowed values are: scan, state

Standard data selection keywords This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array, correlation, field, intent,
observation, scan, spw, taql, timerange, uvrange.

7.1. CASA (pwkit.environments.casa) 123

pwkit, Release 1.0.0

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

plotants

pwkit.environments.casa.tasks.plotants(vis, figfile)
Plot the physical layout of the antennas described in the MS.

vis (str) Path to the input dataset

figfile (str) Path to the output image file.

The output image format will be inferred from the extension of figfile. Example:

from pwkit.environments.casa import tasks
tasks.plotants('dataset.ms', 'antennas.png')

plotcal

pwkit.environments.casa.tasks.plotcal(cfg)
The plotcal task.

cfg A PlotcalConfig object.

This function runs the plotcal task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the PlotcalConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.PlotcalConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.plotcal(cfg)

This task may also be invoked through the command line, as casatask plotcal. Run casatask
plotcal --help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.PlotcalConfig
This is a configuration object for the plotcal task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to plotcal().

The following documentation is written to target the command-line version of this task, which may be in-
voked as casatask plotcal. “Keywords” refer attributes of this structure, “comma-separated lists” should
become Python lists, and so on.

Plot values from a calibration dataset in any of a variety of ways.

caltable= The calibration MS to plot

xaxis= amp antenna chan freq imag phase real snr time

yaxis= amp antenna imag phase real snr

iteration= antenna field spw time

Supported data selection keywords

Limited data selection is supported. Allowed keywords are antenna, field, poln, spw, and timerange.
The poln keyword may take on the values RL, R, L, XY, X, Y, and /.

124 Chapter 7. External Software Environments

pwkit, Release 1.0.0

Plot appearance options

To be documented. These keywords control the plot appearance: plotsymbol, plotcolor, fontsize,
figfile.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

setjy

pwkit.environments.casa.tasks.setjy(cfg)
The setjy task.

cfg A SetjyConfig object.

This function runs the setjy task. For documentation of the general functionality of this task and the parame-
ters it takes, see the documentation for the SetjyConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.SetjyConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.setjy(cfg)

This task may also be invoked through the command line, as casatask setjy. Run casatask setjy
--help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.SetjyConfig
This is a configuration object for the setjy task. This object contains no methods. Rather it contains place-
holders (and default values) for parameters that can be passed to setjy().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask setjy. “Keywords” refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Insert model data into a measurement set. We force usescratch=False and scalebychan=True. You probably
want to specify “field”.

fluxdensity= Up to four comma-separated numbers giving Stokes IQUV intensities in Jy. Default values are [-
1, 0, 0, 0]. If the Stokes I intensity is negative (i.e., the default), a “sensible default” will be used: detailed
spectral models if the source is known (see “standard”), or 1 otherwise. If it is zero and “modimage”
is used, the flux density of the model image is used. The built-in standards do NOT have polarimetric
information, so for pol cal you do need to manually specify the flux density information – or see the
program “casatask polmodel”.

modimage= An image to use as the basis for the source’s spatial structure and, potentialy, flux den-
sity (if fluxdensity=0). Only usable for Stokes I. If the verbatim value of “modimage” can’t be
opened as a path, it is assumed to be relative to the CASA data directory; a typical value might be
“nrao/VLA/CalModels/3C286_C.im”.

spindex= If using fluxdensity, these specify the spectral dependence of the values, such that S =
fluxdensity * (freq/reffreq)**spindex. Reffreq is in GHz. Default values are 0 and 1,
giving no spectral dependence.

reffreq= See spindex.

standard=’Perley-Butler 2013’ Acceptable values are: Baars, Perley 90, Perley-Taylor 95, Perley-Taylor 99,
Perley-Butler 2010, Perley-Butler 2013. You can specify the solar-system standard “Butler-JPL-Horizons
2012”, but doing so farms out the work to a stock CASA installation.

7.1. CASA (pwkit.environments.casa) 125

pwkit, Release 1.0.0

Supported data selection keywords

Only a subset of the standard data selection keywords are supported: field, observation, scan, spw,
timerange..

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

split

pwkit.environments.casa.tasks.split(cfg)
The split task.

cfg A SplitConfig object.

This function runs the split task. For documentation of the general functionality of this task and the parame-
ters it takes, see the documentation for the SplitConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.SplitConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.split(cfg)

This task may also be invoked through the command line, as casatask split. Run casatask split
--help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.SplitConfig
This is a configuration object for the split task. This object contains no methods. Rather it contains place-
holders (and default values) for parameters that can be passed to split().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask split. “Keywords” refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

timebin= Time-average data into bins of “timebin” seconds; defaults to no averaging

step= Frequency-average data in bins of “step” channels; defaults to no averaging

col=all Extract the column “col” as the DATA column. If “all”, copy all available columns without renaming.
Possible values: all, DATA, MODEL_DATA, CORRECTED_DATA, FLOAT_DATA, LAG_DATA.

combine=[col1,col2,. . .] When time-averaging, don’t start a new bin when the specified columns change. Ac-
ceptable column names: scan, state.

Standard data selection keywords This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array, correlation, field, intent,
observation, scan, spw, taql, timerange, uvrange.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

tsysplot

pwkit.environments.casa.tasks.tsysplot(cfg)
The tsysplot task.

cfg A TsysplotConfig object.

126 Chapter 7. External Software Environments

pwkit, Release 1.0.0

This function runs the tsysplot task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the TsysplotConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.TsysplotConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.tsysplot(cfg)

This task may also be invoked through the command line, as casatask tsysplot. Run casatask
tsysplot --help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.TsysplotConfig
This is a configuration object for the tsysplot task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to tsysplot().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask tsysplot. “Keywords” refer attributes of this structure, “comma-separated lists” should be-
come Python lists, and so on.

Plot a system temperature(Tsys) calibration table.

caltable=MS The input calibration Measurement Set

dest=PATH If specified, plots are saved to this file – the format is inferred from the extension, which must
allow multiple pages to be saved. If unspecified, the plots are displayed using a Gtk3 backend.

dims=WIDTH,HEIGHT If saving to a file, the dimensions of a each page. These are in points for vector
formats(PDF, PS) and pixels for bitmaps(PNG). Defaults to 1000, 600.

margins=TOP,RIGHT,LEFT,BOTTOM If saving to a file, the plot margins in the same units as the dims.
The default is 4 on every side.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

uvsub

pwkit.environments.casa.tasks.uvsub(cfg)
The uvsub task.

cfg A UvsubConfig object.

This function runs the uvsub task. For documentation of the general functionality of this task and the parame-
ters it takes, see the documentation for the UvsubConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.UvsubConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.uvsub(cfg)

This task may also be invoked through the command line, as casatask uvsub. Run casatask uvsub
--help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.UvsubConfig
This is a configuration object for the uvsub task. This object contains no methods. Rather it contains place-
holders (and default values) for parameters that can be passed to uvsub().

7.1. CASA (pwkit.environments.casa) 127

pwkit, Release 1.0.0

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask uvsub. “Keywords” refer attributes of this structure, “comma-separated lists” should become
Python lists, and so on.

Set the CORRECTED_DATA column to the difference of DATA and MODEL_DATA.

vis= The input data set.

reverse= Boolean, default false, which means to set CORRECTED = DATA - MODEL. If true, CORRECTED
= DATA + MODEL.

Standard data selection keywords This task can filter input data using any of the following keywords,
specified as in the standard CASA interface: antenna, array, correlation, field, intent,
observation, scan, spw, taql, timerange, uvrange.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

xyphplot

pwkit.environments.casa.tasks.xyphplot(cfg)
The xyphplot task.

cfg A XyphplotConfig object.

This function runs the xyphplot task. For documentation of the general functionality of this task and the
parameters it takes, see the documentation for the XyphplotConfig object below. Example:

from pwkit.environments.casa import tasks

cfg = tasks.XyphplotConfig()
cfg.vis = 'mydataset.ms'
... set other parameters ...
tasks.xyphplot(cfg)

This task may also be invoked through the command line, as casatask xyphplot. Run casatask
xyphplot --help to see another version of the documentation provided below.

class pwkit.environments.casa.tasks.XyphplotConfig
This is a configuration object for the xyphplot task. This object contains no methods. Rather it contains
placeholders (and default values) for parameters that can be passed to xyphplot().

The following documentation is written to target the command-line version of this task, which may be invoked
as casatask xyphplot. “Keywords” refer attributes of this structure, “comma-separated lists” should be-
come Python lists, and so on.

Plot a frequency-dependent X/Y phase calibration table.

caltable=MS The input calibration Measurement Set

dest=PATH If specified, plots are saved to this file – the format is inferred from the extension, which must
allow multiple pages to be saved. If unspecified, the plots are displayed using a Gtk3 backend.

dims=WIDTH,HEIGHT If saving to a file, the dimensions of a each page. These are in points for vector
formats(PDF, PS) and pixels for bitmaps(PNG). Defaults to 1000, 600.

margins=TOP,RIGHT,LEFT,BOTTOM If saving to a file, the plot margins in the same units as the dims.
The default is 4 on every side.

loglevel= Level of detail from CASA logging system. Default value is warn. Allowed values are: severe,
warn, info, info1, info2, info3, info4, info5, debug1, debug2, debugging.

128 Chapter 7. External Software Environments

pwkit, Release 1.0.0

CASA Tools and Utilities (pwkit.environments.casa.util)

This module provides low-level tools and utilities for interacting with the casac module provided by CASA.

This module provides:

• The tools object

• Useful Constants

• Useful Functions

The tools object

pwkit.environments.casa.util.tools
This object is a singleton instance of a hidden class that assists in the creation of CASA “tools” objects. For
instance, you can create and use a standard CASA “tool” for reading and manipulating data tables with code
like this:

from pwkit.environments.casa import util
tb = util.tools.table()
tb.open('myfile.ms')
tb.close()

Documentation for the individual CASA “tools” is beyond the scope of pwkit . . . although maybe it will be
added, since the documentation provided by CASA is pretty weak.

Here’s a list of CASA tool names. They can all be created in the same way: by calling the function tools.
<toolname>(). This will work even for any tools not appearing in this list, so long as they’re provided by
the underlying CASA libraries:

• agentflagger

• atmosphere

• calanalysis

• calibrater

• calplot

• componentlist

• coordsys

• deconvolver

• fitter

• flagger

• functional

• image

• imagepol

• imager

• logsink

• measures

• msmetadata

7.1. CASA (pwkit.environments.casa) 129

pwkit, Release 1.0.0

• ms

• msplot

• mstransformer

• plotms

• regionmanager

• simulator

• spectralline

• quanta

• table

• tableplot

• utils

• vlafiller

• vpmanager

Useful Constants

The following useful constants are provided:

pwkit.environments.casa.util.INVERSE_C_SM
The inverse of the speed of light, c, measured in seconds per meter. This is useful for converting between
wavelength and light travel time.

pwkit.environments.casa.util.INVERSE_C_NSM
The inverse of the speed of light, c, measured in nanoseconds per meter. This is useful for converting between
wavelength and light travel time.

pwkit.environments.casa.util.pol_names
A dictionary mapping CASA polarization codes to their textual names. For instance, pol_names[9] is "XX"
and pol_names[7] is "LR".

pwkit.environments.casa.util.pol_to_miriad
A dictionary mapping CASA polarization codes to MIRIAD polarization codes, such that:

miriad_pol_code = pol_to_miriad[casa_pol_code]

CASA defines many more polarization codes than MIRIAD, although it is unclear whether CASA’s additional
ones are ever used in practice. Trying to map a code without a MIRIAD equivalent will result in a KeyError
as you might expect.

pwkit.environments.casa.util.pol_is_intensity
A dictionary mapping CASA polarization codes to booleans indicating whether the polarization is of “intensity”
type. “Intensity-type” polarizations cannot have negative values; they are II, RR, LL, XX, YY, PP, and QQ.

pwkit.environments.casa.util.msselect_keys
A set of the keys supported by the CASA “MS-select” subsystem.

Useful Functions

130 Chapter 7. External Software Environments

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#set

pwkit, Release 1.0.0

sanitize_unicode(item) Safely pass string values to the CASA tools.
datadir(*subdirs) Get a path within the CASA data directory.
logger([filter]) Set up CASA to write log messages to standard output.
forkandlog(function[, filter, debug]) Fork a child process and read its CASA log output.

pwkit.environments.casa.util.sanitize_unicode(item)
Safely pass string values to the CASA tools.

item A value to be passed to a CASA tool.

In Python 2, the bindings to CASA tasks expect to receive all string values as binary data (str) and not Unicode.
But pwkit often uses the from __future__ import unicode_literals statement to prepare for
Python 3 compatibility, and other Python modules are getting better about using Unicode consistently, so more
and more module code ends up using Unicode strings in cases where they might get exposed to CASA. Doing
so will lead to errors.

This helper function converts Unicode into UTF-8 encoded bytes for arguments that you might pass to a CASA
tool. It will leave non-strings unchanged and recursively transform collections, so you can safely use it just
about anywhere.

I usually import this as just b and write tool.method(b(arg)), in analogy with the b'' byte string syntax.
This leads to code such as:

from pwkit.environments.casa.util import tools, sanitize_unicode as b

tb = tools.table()
path = u'data.ms'
tb.open(path) # => raises exception
tb.open(b(path)) # => works

pwkit.environments.casa.util.datadir(*subdirs)
Get a path within the CASA data directory.

subdirs Extra elements to append to the returned path.

This function locates the directory where CASA resource data files (tables of time offsets, calibrator models,
etc.) are stored. If called with no arguments, it simply returns that path. If arguments are provided, they are
appended to the returned path using os.path.join(), making it easy to construct the names of specific data
files. For instance:

from pwkit.environments.casa import util

cal_image_path = util.datadir('nrao', 'VLA', 'CalModels', '3C286_C.im')
tb = util.tools.image()
tb.open(cal_image_path)

pwkit.environments.casa.util.logger(filter=’WARN’)
Set up CASA to write log messages to standard output.

filter The log level filter: less urgent messages will not be shown. Valid values are strings: “DEBUG1”,
“INFO5”, . . . “INFO1”, “INFO”, “WARN”, “SEVERE”.

This function creates and returns a CASA ”log sink” object that is configured to write to standard output. The
default CASA implementation would always create a file named casapy.log in the current directory; this
function safely prevents such a file from being left around. This is particularly important if you don’t have write
permissions to the current directory.

pwkit.environments.casa.util.forkandlog(function, filter=’INFO5’, debug=False)
Fork a child process and read its CASA log output.

7.1. CASA (pwkit.environments.casa) 131

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.path.html#os.path.join

pwkit, Release 1.0.0

function A function to run in the child process

filter The CASA log level filter to apply in the child process: less urgent messages will not be shown. Valid
values are strings: “DEBUG1”, “INFO5”, . . . “INFO1”, “INFO”, “WARN”, “SEVERE”.

debug If true, the standard output and error of the child process are not redirected to /dev/null.

Some CASA tools produce important results that are only provided via log messages. This is a problem for
automation, since there’s no way for Python code to intercept those log messages and extract the results of
interest. This function provides a framework for working around this limitation: by forking a child process and
sending its log output to a pipe, the parent process can capture the log messages.

This function is a generator. It yields lines from the child process’ CASA log output.

Because the child process is a fork of the parent, it inherits a complete clone of the parent’s state at the time
of forking. That means that the function argument you pass it can do just about anything you’d do in a regular
program.

The child process’ standard output and error streams are redirected to /dev/null unless the debug argument
is true. Note that the CASA log output is redirected to a pipe that is neither of these streams. So, if the function
raises an unhandled Python exception, the Python traceback will not pollute the CASA log output. But, by the
same token, the calling program will not be able to detect that the exception occurred except by its impact on
the expected log output.

CASA: DFT Dynamic Spectra (pwkit.environments.casa.dftdynspec)

This module provides code to extract dynamic spectra from CASA Measurement Sets. CASA doesn’t have a task that
does this.

The function dftdynspec() computes the dynamic spectrum of a point source using a discrete Fourier transform of
its visibilities. The function dftdynspec_cli() provides a hook to launch the computation from a command-line
program.

You can launch a computation from the command line using the command casatask dftdynspec.

Due to limitations in the documentation system we’re using, the options to the dynamic spectrum computation are not
documented here. You can read about them by running casatask dftdynspec --help.

The Loader class

Unlike the other DFT tasks, dftdynspec() produces output that is not easily represented as a table. It is saved to
disk as a set of Numpy arrays. The Loader class provides a convenient mechanism for loading an output data set.

To load and manipulate data, create a Loader instance and then access the various arrays described below:

from pwkit.environments.casa.dftdynspec import Loader
path = 'mydataset.npy' # this gets customized
ds = Loader(path)
print('Maximum real part:', ds.reals.max())

class pwkit.environments.casa.dftdynspec.Loader(path)
Read in a dynamic-spectrum file produced by the dftdynspec task.

Constructor arguments

path The path of the file to read.

Members

132 Chapter 7. External Software Environments

pwkit, Release 1.0.0

counts = None
A 2D array recording the number of visibilities that went into each average. Shape is (mjds.size, freqs.size).

freqs = None
A 1D sorted array of the frequencies of the data samples, measured in GHz.

imags = None
A 2D array of the imaginary parts of the averaged visibilities. Shape is (mjds.size, freqs.size).

mjds = None
A 1D sorted array of the MJDs of the data samples.

n_freqs
The size of the frequency axis of the data arrays; an integer.

n_mjds
The size of the MJD axis of the data arrays; an integer.

reals = None
A 2D array of the real parts of the averaged visibilities. Shape is (mjds.size, freqs.size).

u_imags = None
A 2D array of the estimated uncertainties on the imaginary parts of the averaged visibilities. Shape is
(mjds.size, freqs.size).

u_reals = None
A 2D array of the estimated uncertainties on the real parts of the averaged visibilities. Shape is (mjds.size,
freqs.size).

Compact-source photometry with discrete Fourier transformations (pwkit.environments.casa.
dftphotom)

This module implements an algorithm to compute light curves for point sources in interferometric visibility data.
CASA doesn’t have a task to do this.

The algorithm is accessible from the command line as casatask dftphotom, but it can also be invoked from
within Python. For help on usage from the command line, run casatask dftphotom --help. The command’s
help text will also describe some of the parameters below in more detail than is currently found here.

Usage from Within Python

Basic usage from within Python looks like this:

from pwkit.astutil import parsehours, parsedeglat
from pwkit.environments.casa import dftphotom

Here's a sample way to specify the coordinates to
use; anything that produces J2000 RA/Dec in radians
will work:
ra = parsehours('17:45:00') # result is in radians
dec = parsedeglat('-23:00:00') # result is in radians

cfg = dftphotom.Config()
cfg.vis = 'path/to/vis/data.ms'
cfg.format = dftphotom.PandasOutputFormat()
cfg.outstream = open('mydata.txt', 'w')
cfg.rephase = (ra, dec)

(continues on next page)

7.1. CASA (pwkit.environments.casa) 133

pwkit, Release 1.0.0

(continued from previous page)

dftphotom.dftphotom(cfg)

The main algorithm is implemented in the dftphotom() function. All of the algorithm parameters are passed to the
function via a Config structure. You can create one Config and call dftphotom() with it repeatedly, altering
the parameters each time if you have a series of related computations to run.

API Reference

class pwkit.environments.casa.dftphotom.Config

vis = KeywordOptions(required=True, subval=<class 'str'>)
The path to the visibility MeasurementSet to process. No default; you must specify a value before calling
dftphotom().

datacol = 'data'
A string specifying which visibility data column to process: data, corrected_data, or
model_data. Default 'data'.

believeweights = False
Whether to trust that the data-weight information in the MS accurately describe the noise in their corre-
sponding visibilities. Default False.

outstream
A file-like object into which the output table of data will be written. No default in the Python interface.

datascale = 1000000.0
The amount by which to scale the computed values before emitting them as text. The default is 1e6, which
means that the output will be in microJanskys if the underlying data are calibrated to Jansky units.

format
An instance of a class that will format the algorithm outputs into text. Either HumaneOutputFormat
or PandasOutputFormat.

rephase
A coordinate tuple (ra, dec), giving a location towards which to rephase the visibility data. The inputs
are in radians. If left as None, the visibilities will not be rephased.

Generic CASA data-selection options

array = <class 'str'>

baseline = <class 'str'>

field = <class 'str'>

observation = <class 'str'>

polarization = 'RR,LL'

scan = <class 'str'>

scanintent = <class 'str'>

spw = <class 'str'>

taql = <class 'str'>

134 Chapter 7. External Software Environments

pwkit, Release 1.0.0

time = <class 'str'>

uvdist = <class 'str'>

Generic CASA task options

loglevel = 'warn'

pwkit.environments.casa.dftphotom.dftphotom(cfg)
Run the discrete-Fourier-transform photometry algorithm.

See the module-level documentation and the output of casatask dftphotom --help for help. All of the
algorithm configuration is specified in the cfg argument, which is an instance of Config.

pwkit.environments.casa.dftphotom.dftphotom_cli(argv)
Command-line access to the dftphotom() algorithm.

This function implements the behavior of the command-line casatask dftphotom tool, wrapped up into a
single callable function. The argument argv is a list of command-line arguments, in Unix style where the zeroth
item is the name of the command.

class pwkit.environments.casa.dftphotom.HumaneOutputFormat

class pwkit.environments.casa.dftphotom.PandasOutputFormat

Structured scripting within casapy (pwkit.environments.casa.scripting)

pwkit.environments.casa.scripting - scripted invocation of casapy.

The “casapy” program is extremely resistant to encapsulated scripting – it pops up GUI windows and child processes,
leaves log files around, provides a non-vanilla Python environment, and so on. However, sometimes scripting CASA
is what we need to do. This tool enables that.

We provide a single-purpose CLI tool for this functionality, so that you can write standalone scripts with a hashbang
line of “#! /usr/bin/env pkcasascript” – hashbang lines support only one extra command-line argument, so if we’re
using “env” we can’t take a multitool approach.

class pwkit.environments.casa.scripting.CasapyScript(script, raise_on_error=True,
**kwargs)

Context manager for launching a script in the casapy environment. This involves creating a temporary wrapper
and then using the CasaEnvironment to run it in a temporary directory.

When this context manager is entered, the script is launched and the calling process waits until it finishes. This
object is returned. The with statement body is then executed so that information can be extracted from the results
of the casapy invocation. When the context manager is exited, the casapy files are (usually) cleaned up.

Attributes:

args the arguments to passed to the script.

env the CasaEnvironment used to launch the casapy process.

exitcode the exit code of the casapy process. 0 is success. 127 indicates an intentional error exit by the script;
additional diagnostics don’t need printing and the work directory doesn’t need preservation. Negative
values indicate death from a signal.

proc the subprocess.Popen instance of casapy; inside the context manager body it’s already exited.

rmtree boolean; whether to delete the working tree upon context manager exit.

script the path to the script to be invoked.

7.1. CASA (pwkit.environments.casa) 135

pwkit, Release 1.0.0

workdir the working directory in which casapy was started.

wrapped the path to the wrapper script run inside casapy.

There is a very large overhead to running casapy scripts. The outer Python code sleeps for at least 5 seconds to
allow various cleanups to happen.

Merging spectral windows in visibility data (pwkit.environments.casa.spwglue)

pwkit.environments.casa.spwglue - merge spectral windows in a MeasurementSet

I find that merging windows in this way offers a lot of advantages. This procesing step is very slow, however.

class pwkit.environments.casa.spwglue.Progress
This could be split out; it’s useful.

class pwkit.environments.casa.spwglue.Config

hackfield
alias of builtins.int

meanbp
alias of builtins.str

7.1.3 Using CASA in the pwkit.environments framework

The module pwkit.environments implements a system for running sub-programs that depend on large, external
software environments such as CASA. It provides a command-line tool, pkenvtool, that you can use to run code in
a controlled CASA environment.

Some of the tasks provided by pwkit rely on this framework to implement their functionality — in these cases, the
value that pwkit is providing is that it lets you access complex CASA functionality through a simple function call in
a standard Python environment, rather than requiring manual invocation in a casapy shell.

In order to use these tasks or the CASA features of the pkenvtool program, you must tell the pwkit.
environments system where your CASA installation may be found. To do this, just export an environment variable
named $PWKIT_CASA that stores the path to the CASA installation root. In other words, the file $PWKIT_CASA/
bin/casa should exist. (Well, the code also checks for $PWKIT_CASA/bin/casapy to try to be compatible with
older CASA versions.) The environments system will take care of the rest.

Note: does this work on 32-bit systems? Does this work on Macs?

7.1.4 CASA installation notes

Download tarball as linked from here. The tarball unpacks to some versioned subdirectory. The names and version
codes are highly variable and annoying.

7.2 HEASoft (pwkit.environments.heasoft)

This module provides an encapsulated scheme for running HEASoft tools within the pwkit.environments frame-
work.

This module sets things up such that parameter files for HEASoft tasks (“pfiles”) land in the directory ~/.local/
share/hea-pfiles/.

136 Chapter 7. External Software Environments

http://casa.nrao.edu/casa_obtaining.shtml

pwkit, Release 1.0.0

7.2.1 Using HEASoft in the pwkit.environments framework

The module pwkit.environments implements a system for running sub-programs that depend on large, external
software environments such as HEASoft. It provides a command-line tool, pkenvtool, that you can use to run
HEASoft code in a controlled environment.

In order to use this module, you must tell the pwkit.environments system where your HEASoft installation
may be found. To do this, just export an environment variable named $PWKIT_HEASOFT that stores the path
to the platform-specific subdirectory of your HEASoft installation. In other words, the file $PWKIT_HEASOFT/
headas-init.sh should exist. On a Linux system the value of $PWKIT_HEASOFT might end with something
like x86_64-unknown-linux-gnu-libc2.23. Once you’ve correctly set this environment variable, the envi-
ronments system will take care of the rest.

7.2.2 HEAsoft installation notes

The following examples assume version 6.21 for concreteness. Substitute your actual version as needed, of course.

Installation of HEASoft from source is strongly recommended. Download the source code from a URL like this one.
The HEASoft website lets you customize the tarball, but it’s probably easiest just to do the full install every time. The
tarball unpacks into a directory named like heasoft-6.21/... so you can safely curl|tar in your source-code
directory.

To build, then run something like:

$ cd heasoft-6.21/BUILD_DIR
$./configure --prefix=/a/heasoft/6.21
$ make # note: not parallel-friendly
$ make install

You then need to fetch the CALDB data files into the HEASoft installation directory:

$ cd /a/heasoft/6.21
$ wget http://heasarc.gsfc.nasa.gov/FTP/caldb/software/tools/caldb.config
$ wget http://heasarc.gsfc.nasa.gov/FTP/caldb/software/tools/alias_config.fits

7.3 SAS (pwkit.environments.sas)

sas - running software in the SAS environment

To use, export an environment variable $PWKIT_SAS pointing to the SAS installation root. The files
$PWKIT_SAS/RELEASE and $PWKIT_SAS/setsas.sh should exist. The “current calibration files” (CCF) should
be accessible as $PWKIT_SAS/ccf/; a symlink may make sense if multiple SAS versions are going to be used.

SAS is unusual because you need to set up some magic environment variables specific to the dataset that you’re
working with. There is also default preparation to be run on each dataset before anything useful can be done.

7.3.1 Unpacking data sets

Data sets are downloaded as tar.gz files. Those unpack to a few files in ‘.’ including a .TAR file, which should be
unpacked too. That unpacks to a bunch of data files in ‘.’ as well.

7.3. SAS (pwkit.environments.sas) 137

http://heasarc.gsfc.nasa.gov/FTP/software/lheasoft/release/heasoft-6.21src.tar.gz

pwkit, Release 1.0.0

7.3.2 SAS installation notes

Download tarball from, e.g.,

ftp://legacy.gsfc.nasa.gov/xmm/software/sas/14.0.0/64/Linux/Fedora20/

Tarball unpacks installation script and data into ‘.’, and the installation script sets up a SAS install in a versioned
subdirectory of ‘.’, so curl|tar should be run from something like /a/sas:

$./install.sh

The CCF are like CALDB and need to be rsynced – see the update-ccf subcommand.

7.3.3 ODF data format notes

ODF files all have names in the format RRRR_NNNNNNNNNN_IIUEEECCMMM.ZZZ where:

RRRR revolution (orbit) number

NNNNNNNNNN obs ID

II The instrument:

OM optical monitor

R1 RGS (reflection grating spectrometer) unit 1

R2 RGS 2

M1 EPIC (imaging camera) MOS 1 detector

M2 EPIC (imaging camera) MOS 2 detector

PN EPIC (imaging camera) PN detector

RM EPIC radiation monitor

SC spacecraft

U Scheduling status of exposure:

S scheduled

U unscheduled

X N/A

EEE exposure number

CC CCD/OM-window ID

MMM data type of file (many; not listed here)

ZZZ file extension

See the make-*-aliases commands for tools that generate symlinks with saner names.

7.3.4 More detailed documentation

Interacting with SAS data sets (pwkit.environments.sas.data)

pwkit.environments.sas.data - loading up SAS data sets

138 Chapter 7. External Software Environments

ftp://legacy.gsfc.nasa.gov/xmm/software/sas/14.0.0/64/Linux/Fedora20/

pwkit, Release 1.0.0

Data sets

BaseSASData(path[, mjd0, t0])
Events(path[, mjd0, t0])
GTIData(path[, mjd0, t0])
Lightcurve(path[, mjd0, t0])
RegionData(path[, mjd0, t0])

class pwkit.environments.sas.data.BaseSASData(path, mjd0=None, t0=None)

class pwkit.environments.sas.data.Events(path, mjd0=None, t0=None)

class pwkit.environments.sas.data.GTIData(path, mjd0=None, t0=None)

class pwkit.environments.sas.data.Lightcurve(path, mjd0=None, t0=None)

class pwkit.environments.sas.data.RegionData(path, mjd0=None, t0=None)

7.4 CIAO (pwkit.environments.ciao)

ciao - running software in the CIAO environment

To use, export an environment variable $PWKIT_CIAO pointing to the CIAO installation root.

7.4.1 Unpacking data sets

Data sets are provided as tar files. They unpack to a directory named by the “obsid” which contains an oif.fits
file and primary and secondary subdirectories.

7.4.2 CIAO installation notes

Download installer script from http://cxc.harvard.edu/ciao/download/. Select some kind of parent directory like /
soft/ciao for both downloading tarballs and installing CIAO itself. This may also download and install the large
“caldb” data set. All of the files will end up in a subdirectory such as /soft/ciao/ciao-4.8.

class pwkit.environments.ciao.CiaoTool

invoke_command(cmd, args, **kwargs)
This function mainly exists to be overridden by subclasses.

7.4. CIAO (pwkit.environments.ciao) 139

http://cxc.harvard.edu/ciao/download/

pwkit, Release 1.0.0

140 Chapter 7. External Software Environments

CHAPTER 8

Tools for writing command-line programs

This documentation has a lot of stubs.

8.1 Utilities for command-line programs (pwkit.cli)

pwkit.cli - miscellaneous utilities for command-line programs.

Functions:

backtrace_on_usr1 - Make it so that a Python backtrace is printed on SIGUSR1. check_usage - Print usage and exit if
–help is in argv. die - Print an error and exit. fork_detached_process - Fork a detached process. pop_option - Check
for a single command-line option. propagate_sigint - Ensure that calling shells know when we die from SIGINT.
show_usage - Print a usage message. unicode_stdio - Ensure that sys.std{in,out,err} accept unicode strings. warn -
Print a warning. wrong_usage - Print an error about wrong usage and the usage help.

Context managers:

print_tracebacks - Catch exceptions and print tracebacks without reraising them.

Submodules:

multitool - Framework for command-line programs with sub-commands.

pwkit.cli.check_usage(docstring, argv=None, usageifnoargs=False)
Check if the program has been run with a –help argument; if so, print usage information and exit.

Parameters

• docstring (str) – the program help text

• argv – the program arguments; taken as sys.argv if given as None (the default). (Note
that this implies argv[0] should be the program name and not the first option.)

• usageifnoargs (bool) – if True, usage information will be printed and the program
will exit if no command-line arguments are passed. If “long”, print long usasge. Default is
False.

141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/functions.html#bool

pwkit, Release 1.0.0

This function is intended for small programs launched from the command line. The intention is for the program
help information to be written in its docstring, and then for the preamble to contain something like:

"""myprogram - this is all the usage help you get"""
import sys
... # other setup
check_usage (__doc__)
... # go on with business

If it is determined that usage information should be shown, show_usage() is called and the program exits.

See also wrong_usage().

pwkit.cli.die(fmt, *args)
Raise a SystemExit exception with a formatted error message.

Parameters

• fmt (str) – a format string

• args – arguments to the format string

If args is empty, a SystemExit exception is raised with the argument 'error: ' + str (fmt).
Otherwise, the string component is fmt % args. If uncaught, the interpreter exits with an error code and
prints the exception argument.

Example:

if ndim != 3:
die ('require exactly 3 dimensions, not %d', ndim)

pwkit.cli.fork_detached_process()
Fork this process, creating a subprocess detached from the current context.

Returns a pwkit.Holder instance with information about what happened. Its fields are:

whoami A string, either “original” or “forked” depending on which process we are.

pipe An open binary file descriptor. It is readable by the original process and writable by the forked one. This
can be used to pass information from the forked process to the one that launched it.

forkedpid The PID of the forked process. Note that this process is not a child of the original one, so waitpid()
and friends may not be used on it.

Example:

from pwkit import cli

info = cli.fork_detached_process ()
if info.whoami == 'original':

message = info.pipe.readline ().decode ('utf-8')
if not len (message):

cli.die ('forked process (PID %d) appears to have died', info.forkedpid)
info.pipe.close ()
print ('forked process said:', message)

else:
info.pipe.write ('hello world'.encode ('utf-8'))
info.pipe.close ()

As always, the vital thing to understand is that immediately after a call to this function, you have two nearly-
identical but entirely independent programs that are now both running simultaneously. Until you execute some

142 Chapter 8. Tools for writing command-line programs

https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#SystemExit

pwkit, Release 1.0.0

kind of if statement, the only difference between the two processes is the value of the info.whoami field
and whether info.pipe is readable or writeable.

This function uses os.fork() twice and also calls os.setsid() in between the two invocations, which
creates new session and process groups for the forked subprocess. It does not perform other operations that you
might want, such as changing the current directory, dropping privileges, closing file descriptors, and so on. For
more discussion of best practices when it comes to “daemonizing” processes, see (stalled) PEP 3143.

pwkit.cli.pop_option(ident, argv=None)
A lame routine for grabbing command-line arguments. Returns a boolean indicating whether the option was
present. If it was, it’s removed from the argument string. Because of the lame behavior, options can’t be
combined, and non-boolean options aren’t supported. Operates on sys.argv by default.

Note that this will proceed merrily if argv[0] matches your option.

class pwkit.cli.print_tracebacks(types=(<class ’Exception’>,), header=None, file=None)
Context manager that catches exceptions and prints their tracebacks without reraising them. Intended for robust
programs that want to continue execution even if something bad happens; this provides the infrastructure to
swallow exceptions while still preserving exception information for later debugging.

You can specify which exception classes to catch with the types keyword argument to the constructor. The
header keyword will be printed if specified; this could be used to add contextual information. The file keyword
specifies the destination for the printed output; default is sys.stderr.

Instances preserve the exception information in the fields ‘etype’, ‘evalue’, and ‘etb’ if your program in fact
wants to do something with the information. One basic use would be checking whether an exception did, in fact,
occur.

pwkit.cli.show_usage(docstring, short, stream, exitcode)
Print program usage information and exit.

Parameters docstring (str) – the program help text

This function just prints docstring and exits. In most cases, the function check_usage() should be used: it
automatically checks sys.argv for a sole “-h” or “–help” argument and invokes this function.

This function is provided in case there are instances where the user should get a friendly usage message that
check_usage() doesn’t catch. It can be contrasted with wrong_usage(), which prints a terser usage
message and exits with an error code.

pwkit.cli.unicode_stdio()
Make sure that the standard I/O streams accept Unicode.

In Python 2, the standard I/O streams accept bytes, not Unicode characters. This means that in principle every
Unicode string that we want to output should be encoded to utf-8 before print()ing. But Python 2.X has a hack
where, if the output is a terminal, it will automatically encode your strings, using UTF-8 in most cases.

BUT this hack doesn’t kick in if you pipe your program’s output to another program. So it’s easy to write a tool
that works fine in most cases but then blows up when you log its output to a file.

The proper solution is just to do the encoding right. This function sets things up to do this in the most sensible
way I can devise, if we’re running on Python 2. This approach sets up compatibility with Python 3, which has
the stdio streams be in text mode rather than bytes mode to begin with.

Basically, every command-line Python program should call this right at startup. I’m tempted to just invoke this
code whenever this module is imported since I foresee many accidentally omissions of the call.

pwkit.cli.wrong_usage(docstring, *rest)
Print a message indicating invalid command-line arguments and exit with an error code.

Parameters

• docstring (str) – the program help text

8.1. Utilities for command-line programs (pwkit.cli) 143

https://docs.python.org/3/library/os.html#os.fork
https://docs.python.org/3/library/os.html#os.setsid
https://www.python.org/dev/peps/pep-3143/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/stdtypes.html#str

pwkit, Release 1.0.0

• rest – an optional specific error message

This function is intended for small programs launched from the command line. The intention is for the program
help information to be written in its docstring, and then for argument checking to look something like this:

"""mytask <input> <output>

Do something to the input to create the output.
"""
...
import sys
... # other setup
check_usage (__doc__)
... # more setup
if len (sys.argv) != 3:

wrong_usage (__doc__, "expect exactly 2 arguments, not %d",
len (sys.argv))

When called, an error message is printed along with the first stanza of docstring. The program then exits with an
error code and a suggestion to run the program with a –help argument to see more detailed usage information.
The “first stanza” of docstring is defined as everything up until the first blank line, ignoring any leading blank
lines.

The optional message in rest is treated as follows. If rest is empty, the error message “invalid command-line
arguments” is printed. If it is a single item, the stringification of that item is printed. If it is more than one item,
the first item is treated as a format string, and it is percent-formatted with the remaining values. See the above
example.

See also check_usage() and show_usage().

8.2 Parsing keyword-style program arguments (pwkit.kwargv)

The pwkit.kwargv module provides a framework for parsing keyword-style arguments to command-line programs.
It’s designed so that you can easily make a routine with complex, structured configuration parameters that can also be
driven from the command line.

Keywords are defined by declaring a subclass of the ParseKeywords class with fields corresponding to the support
keywords:

from pwkit.kwargv import ParseKeywords, Custom

class MyConfig(ParseKeywords):
foo = 1
bar = str
multi = [int]
extra = Custom(float, required=True)

@Custom(str)
def declination(value):

from pwkit.astutil import parsedeglat
return parsedeglat(value)

Instantiating the subclass fills in all defaults. Calling the ParseKeywords.parse() method parses a list of strings
(defaulting to sys.argv[1:]) and updates the instance’s properties. This framework is designed so that you can
provide complex configuration to an algorithm either programmatically, or on the command line. A typical use would
be:

144 Chapter 8. Tools for writing command-line programs

pwkit, Release 1.0.0

from pwkit.kwargv import ParseKeywords, Custom

class MyConfig(ParseKeywords):
niter = 1
input = str
scales = [int]
...

def my_complex_algorithm(cfg):
from pwkit.io import Path
data = Path(cfg.input).read_fits()

for i in range(cfg.niter):
....

def call_algorithm_in_code():
cfg = MyConfig()
cfg.input = 'testfile.fits'
...
my_complex_algorithm(cfg)

if __name__ == '__main__':
cfg = MyConfig().parse()
my_complex_algorithm(cfg)

You could then execute the module as a program and specify arguments in the form ./program niter=5
input=otherfile.fits.

8.2.1 Keyword Specification Format

Arguments are specified in the following ways:

• foo = 1 defines a keyword with a default value, type inferred as int. Likewise for str, bool, float.

• bar = str defines an string keyword with default value of None. Likewise for int, bool, float.

• multi = [int] parses as a list of integers of any length, defaulting to the empty list [] (I call these “flexible”
lists.). List items are separated by commas on the command line.

• other = [3.0, int] parses as a 2-element list, defaulting to [3.0, None]. If one value is given, the
first array item is parsed, and the second is left as its default. (I call these “fixed” lists.)

• extra = Custom(float, required=True) parses like float and then customizes keyword proper-
ties. Supported properties are the attributes of the KeywordInfo class.

• Use Custom as a decorator (@Custom) on a function foo defines a keyword foo that’s parsed according to
the Custom specification, then has its value fixed up by calling the foo() function after the basic parsing.
That is, the final value is foo (intermediate_value). A common pattern is to use a fixup function for a
fixed list where the first few values are mandatory (see KeywordInfo.minvals below) but later values can
be guessed or defaulted.

See the KeywordInfo documentation for specification of additional keyword properties that may be specified. The
Custom name is simply an alias for KeywordInfo.

pwkit.kwargv.Custom
alias of pwkit.kwargv.KeywordOptions

exception pwkit.kwargv.KwargvError(fmt, *args)
Raised when invalid arguments have been provided.

8.2. Parsing keyword-style program arguments (pwkit.kwargv) 145

pwkit, Release 1.0.0

exception pwkit.kwargv.ParseError(fmt, *args)
Raised when the structure of the arguments appears legitimate, but a particular value cannot be parsed into its
expected type.

class pwkit.kwargv.KeywordInfo
Properties that a keyword argument may have.

default = None
The default value for the keyword if it’s left unspecified.

fixupfunc = None
If not None, the final value of the keyword is set to the return value of
fixupfunc(intermediate_value).

maxvals = None
The maximum number of values allowed. This only applies for flexible lists; fixed lists have predetermined
sizes.

minvals = 0
The minimum number of values allowed in a flexible list, if the keyword is specified at all. If you want
minvals = 1, use required = True.

parser = None
A callable used to convert the argument text to a Python value. This attribute is assigned automatically
upon setup.

printexc = False
Print the exception as normal if there’s an exception when parsing the keyword value. Otherwise there’s
just a message along the lines of “cannot parse value <val> for keyword <kw>”.

repeatable = False
If true, the keyword value(s) will always be contained in a list. If they keyword is specified multiple
times (i.e. ./program kw=1 kw=2), the list will have multiple items (cfg.kw = [1, 2]). If the
keyword is list-valued, using this will result in a list of lists.

required = False
Whether an error should be raised if the keyword is not seen while parsing.

scale = None
If not None, multiply numeric values by this number after parsing.

sep = ','
The textual separator between items for list-valued keywords.

uiname = None
The name of the keyword as parsed from the command-line. For instance, some_value =
Custom(int, uiname="some-value") will result in a keyword that the user sets by calling .
/program some-value=3. This provides a mechanism to support keyword names that are not legal
Python identifiers.

class pwkit.kwargv.ParseKeywords
The template class for defining your keyword arguments. A subclass of pwkit.Holder. Declare attributes in
a subclass following the scheme described above, then call the ParseKeywords.parse() method.

parse(args=None)
Parse textual keywords as described by this class’s attributes, and update this instance’s attributes with
the parsed values. args is a list of strings; if None, it defaults to sys.argv[1:]. Returns self for
convenience. Raises KwargvError if invalid keywords are encountered.

See also ParseKeywords.parse_or_die().

146 Chapter 8. Tools for writing command-line programs

pwkit, Release 1.0.0

parse_or_die(args=None)
Like ParseKeywords.parse(), but calls pkwit.cli.die() if a KwargvError is raised, print-
ing the exception text. Returns self for convenience.

pwkit.kwargv.basic(args=None)
Parse the string list args as a set of keyword arguments in a very simple-minded way, splitting on equals signs.
Returns a pwkit.Holder instance with attributes set to strings. The form +foo is mapped to setting foo =
True on the pwkit.Holder instance. If args is None, sys.argv[1:] is used. Raises KwargvError
on invalid arguments (i.e., ones without an equals sign or a leading plus sign).

8.3 Command-line programs with sub-commands (pwkit.cli.
multitool)

pwkit.cli.multitool - Framework for command-line tools with sub-commands

This module provides a framework for quickly creating command-line programs that have multiple independent sub-
commands (similar to the way Git’s interface works).

Classes:

Command A command supported by the tool.

DelegatingCommand A command that delegates to named sub-commands.

HelpCommand A command that prints the help for other commands.

Multitool The tool itself.

UsageError Raised if illegal command-line arguments are used.

Functions:

invoke_tool Run as a tool and exit.

Standard usage:

class MyCommand (multitool.Command):
name = 'info'
summary = 'Do something useful.'

def invoke (self, args, **kwargs):
print ('hello')

class MyTool (multitool.MultiTool):
cli_name = 'mytool'
summary = 'Do several useful things.'

HelpCommand = multitool.HelpCommand # optional

def commandline ():
multitool.invoke_tool (globals ())

pwkit.cli.multitool.invoke_tool(namespace, tool_class=None)
Invoke a tool and exit.

namespace is a namespace-type dict from which the tool is initialized. It should contain exactly one value that
is a Multitool subclass, and this subclass will be instantiated and populated (see Multitool.populate()) using
the other items in the namespace. Instances and subclasses of Command will therefore be registered with the
Multitool. The tool is then invoked.

8.3. Command-line programs with sub-commands (pwkit.cli.multitool) 147

pwkit, Release 1.0.0

pwkit.cli.propagate_sigint() and pwkit.cli.unicode_stdio() are called at the start of this function. It should there-
fore be only called immediately upon startup of the Python interpreter.

This function always exits with an exception. The exception will be SystemExit (0) in case of success.

The intended invocation is invoke_tool (globals ()) in some module that defines a Multitool subclass and multiple
Command subclasses.

If tool_class is not None, this is used as the tool class rather than searching namespace, potentially avoiding
problems with modules containing multiple Multitool implementations.

class pwkit.cli.multitool.Command
A command in a multifunctional CLI tool.

For historical reasons, this class defaults to a homebrew argument parsing system. Use ArgparsingCommand
for a better system based on the argparse module.

Attributes:

argspec One-line string summarizing the command-line arguments that should be passed to this command.

help_if_no_args If True, usage help will automatically be displayed if no command-line arguments are given.

more_help Additional help text to be displayed below the summary (optional).

name The command’s name, as should be specified at the CLI.

summary A one-line summary of this command’s functionality.

Functions:

invoke(self, args, **kwargs) Execute this command.

‘name’ must be set; other attributes are optional, although at least ‘summary’ and ‘argspec’ should be set.
‘invoke()’ must be implemented.

invoke(args, **kwargs)
Invoke this command. ‘args’ is a list of the remaining command-line arguments. ‘kwargs’ contains at
least ‘argv0’, which is the equivalent of, well, argv[0] for this command; ‘tool’, the originating Multi-
tool instance; and ‘parent’, the parent DelegatingCommand instance. Other kwargs may be added in an
application-specific manner. Basic processing of ‘–help’ will already have been done if invoked through
invoke_with_usage().

invoke_with_usage(args, **kwargs)
Invoke the command with standardized usage-help processing. Same calling convention as Com-
mand.invoke().

class pwkit.cli.multitool.DelegatingCommand(populate_from_self=True)
A command that delegates to sub-commands.

Attributes:

cmd_desc The noun used to desribe the sub-commands.

usage_tmpl A formatting template for long tool usage. The default is almost surely acceptable.

Functions:

register Register a new sub-command.

populate Register many sub-commands automatically.

invoke(args, **kwargs)
Invoke this command. ‘args’ is a list of the remaining command-line arguments. ‘kwargs’ contains at
least ‘argv0’, which is the equivalent of, well, argv[0] for this command; ‘tool’, the originating Multi-
tool instance; and ‘parent’, the parent DelegatingCommand instance. Other kwargs may be added in an

148 Chapter 8. Tools for writing command-line programs

pwkit, Release 1.0.0

application-specific manner. Basic processing of ‘–help’ will already have been done if invoked through
invoke_with_usage().

invoke_command(cmd, args, **kwargs)
This function mainly exists to be overridden by subclasses.

populate(values)
Register multiple new commands by investigating the iterable values. For each item in values, instances
of Command are registered, and subclasses of Command are instantiated (with no arguments passed to the
constructor) and registered. Other kinds of values are ignored. Returns ‘self’.

register(cmd)
Register a new command with the tool. ‘cmd’ is expected to be an instance of Command, although here
only the cmd.name attribute is investigated. Multiple commands with the same name are not allowed to be
registered. Returns ‘self’.

class pwkit.cli.multitool.HelpCommand

invoke(args, parent=None, parent_kwargs=None, **kwargs)
Invoke this command. ‘args’ is a list of the remaining command-line arguments. ‘kwargs’ contains at
least ‘argv0’, which is the equivalent of, well, argv[0] for this command; ‘tool’, the originating Multi-
tool instance; and ‘parent’, the parent DelegatingCommand instance. Other kwargs may be added in an
application-specific manner. Basic processing of ‘–help’ will already have been done if invoked through
invoke_with_usage().

class pwkit.cli.multitool.Multitool
A command-line tool with multiple sub-commands.

Attributes:

cli_name - The usual name of this tool on the command line. more_help - Additional help text.
summary - A one-line summary of this tool’s functionality.

Functions:

commandline - Execute a command as if invoked from the command-line. register - Register a new
command. populate - Register many commands automatically.

commandline(argv)
Run as if invoked from the command line. ‘argv’ is a Unix-style list of arguments, where the zeroth item is
the program name (which is ignored here). Usage help is printed if deemed appropriate (e.g., no arguments
are given). This function always terminates with an exception, with the exception being a SystemExit(0)
in case of success.

Note that we don’t actually use argv[0] to set argv0 because it will generally be the full path to the script
name, which is unattractive.

exception pwkit.cli.multitool.UsageError(fmt, *args)
Raised if illegal command-line arguments are used in a Multitool program.

8.3. Command-line programs with sub-commands (pwkit.cli.multitool) 149

pwkit, Release 1.0.0

150 Chapter 8. Tools for writing command-line programs

CHAPTER 9

Behind-the-scenes infrastructure

This documentation has a lot of stubs.

9.1 Interfacing with other software environments (pwkit.
environments)

pwkit.environments - working with external software environments

Classes:

Environment - base class for launching programs in an external environment.

Submodules:

heasoft - HEAsoft sas - SAS

Functions:

prepend_environ_path - Prepend into a $PATH in an environment dict. prepend_path - Prepend text into
a $PATH-like environment variable. user_data_path - Generate paths for storing miscellaneous user data.

Standard usage is to create an Environment instance, then use its launch(argv, . . .) method to run programs in the
specified environment. launch() returns a subprocess.Popen instance that can be used in the standard ways.

pwkit.environments.prepend_environ_path(env, name, text, pathsep=’:’)
Prepend text into a $PATH-like environment variable. env is a dictionary of environment variables and name is
the variable name. pathsep is the character separating path elements, defaulting to os.pathsep. The variable will
be created if it is not already in env. Returns env.

Example:

prepend_environ_path(env, 'PATH', '/mypackage/bin')

The name and text arguments should be str objects; that is, bytes in Python 2 and Unicode in Python 3. Literal
strings will be OK unless you use the from __future__ import unicode_literals feature.

151

pwkit, Release 1.0.0

pwkit.environments.prepend_path(orig, text, pathsep=’:’)
Returns a $PATH-like environment variable with text prepended. orig is the original variable value, or None.
pathsep is the character separating path elements, defaulting to os.pathsep.

Example:

newpath = cli.prepend_path(oldpath, ‘/mypackage/bin’)

See also prepend_environ_path.

9.2 Helper for decorators on class methods (pwkit.
method_decorator)

Python decorator that knows the class the decorated method is bound to.

Please see full description here: https://github.com/denis-ryzhkov/method_decorator/blob/master/README.md

method_decorator version 0.1.3 Copyright (C) 2013 by Denis Ryzhkov <denisr@denisr.com> MIT License, see http:
//opensource.org/licenses/MIT

152 Chapter 9. Behind-the-scenes infrastructure

https://github.com/denis-ryzhkov/method_decorator/blob/master/README.md
mailto:denisr@denisr.com
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

153

pwkit, Release 1.0.0

154 Chapter 10. Indices and tables

Python Module Index

p
pwkit, 5
pwkit.astimage, 46
pwkit.astutil, 35
pwkit.bblocks, 47
pwkit.cgs, 49
pwkit.cli, 141
pwkit.cli.astrotool, 89
pwkit.cli.imtool, 89
pwkit.cli.latexdriver, 89
pwkit.cli.multitool, 147
pwkit.cli.wrapout, 89
pwkit.colormaps, 91
pwkit.contours, 92
pwkit.data_gui_helpers, 93
pwkit.dulk_models, 49
pwkit.ellipses, 53
pwkit.environments, 151
pwkit.environments.casa, 105
pwkit.environments.casa.dftdynspec, 132
pwkit.environments.casa.dftphotom, 133
pwkit.environments.casa.scripting, 135
pwkit.environments.casa.spwglue, 136
pwkit.environments.casa.tasks, 106
pwkit.environments.casa.util, 129
pwkit.environments.ciao, 139
pwkit.environments.heasoft, 136
pwkit.environments.sas, 137
pwkit.environments.sas.data, 138
pwkit.fk10, 57
pwkit.immodel, 62
pwkit.inifile, 97
pwkit.io, 8
pwkit.kbn_conf, 62
pwkit.kwargv, 144
pwkit.latex, 98
pwkit.lmmin, 62
pwkit.lsqmdl, 65
pwkit.method_decorator, 152

pwkit.msmt, 71
pwkit.numutil, 21
pwkit.parallel, 28
pwkit.pdm, 74
pwkit.phoenix, 75
pwkit.radio_cal_models, 76
pwkit.sherpa, 77
pwkit.simpleenum, 32
pwkit.slurp, 95
pwkit.synphot, 81
pwkit.tabfile, 102
pwkit.tinifile, 103
pwkit.ucd_physics, 86
pwkit.unicode_to_latex, 104

155

pwkit, Release 1.0.0

156 Python Module Index

Index

A
abcd2() (in module pwkit.ellipses), 56
abcell() (in module pwkit.ellipses), 56
abmag_to_flam_ang() (in module pwkit.synphot),

85
abmag_to_fnu_cgs() (in module pwkit.synphot), 85
abs2app() (in module pwkit.astutil), 45
absolute() (pwkit.io.Path method), 11
add() (pwkit.lsqmdl.SeriesComponent method), 70
addcol() (pwkit.latex.TableBuilder method), 101
AddConstantComponent (class in pwkit.lsqmdl), 69
addhcline() (pwkit.latex.TableBuilder method), 101
AddPolynomialComponent (class in pwkit.lsqmdl),

70
AddValuesComponent (class in pwkit.lsqmdl), 69
AlignedNumberFormatter (class in pwkit.latex),

99
AlreadyDefinedError (class in pwkit.synphot), 86
analytic_2d() (in module pwkit.contours), 92
anchor (pwkit.io.Path attribute), 10
angcen() (in module pwkit.astutil), 38
app2abs() (in module pwkit.astutil), 45
applycal() (in module

pwkit.environments.casa.tasks), 108
ApplycalConfig (class in

pwkit.environments.casa.tasks), 108
argv (pwkit.slurp.Slurper attribute), 97
array (pwkit.environments.casa.dftphotom.Config at-

tribute), 134
as_hdf_store() (pwkit.io.Path method), 17
as_nonlinear() (pwkit.lsqmdl.PolynomialModel

method), 68
as_uri() (pwkit.io.Path method), 11
AstroImage (class in pwkit.astimage), 46
AstrometryInfo (class in pwkit.astutil), 41
axdescs (pwkit.astimage.AstroImage attribute), 46

B
band (pwkit.synphot.Bandpass attribute), 84

Bandpass (class in pwkit.synphot), 83
bands() (pwkit.synphot.Registry method), 83
baseline (pwkit.environments.casa.dftphotom.Config

attribute), 134
BaseSASData (class in pwkit.environments.sas.data),

139
basic() (in module pwkit.kwargv), 147
BasicFormatter (class in pwkit.latex), 99
bcj_from_spt() (in module pwkit.ucd_physics), 86
bck_from_spt() (in module pwkit.ucd_physics), 86
believeweights (pwkit.environments.casa.dftphotom.Config

attribute), 134
bin_bblock() (in module pwkit.bblocks), 47
bivabc() (in module pwkit.ellipses), 54
bivell() (in module pwkit.ellipses), 54
bivnorm() (in module pwkit.ellipses), 54
bivrandom() (in module pwkit.ellipses), 55
blackbody() (pwkit.synphot.Bandpass method), 85
bmaj (pwkit.astimage.AstroImage attribute), 46
bmin (pwkit.astimage.AstroImage attribute), 46
BoolFormatter (class in pwkit.latex), 99
bpa (pwkit.astimage.AstroImage attribute), 47
bpplot() (in module pwkit.environments.casa.tasks),

109
BpplotConfig (class in

pwkit.environments.casa.tasks), 109
broadcastize() (in module pwkit.numutil), 22
bs_tt_bblock() (in module pwkit.bblocks), 48
builtin_registrars (in module pwkit.synphot), 83

C
calc_freefree_eta() (in module

pwkit.dulk_models), 50
calc_freefree_kappa() (in module

pwkit.dulk_models), 50
calc_freefree_snu_ujy() (in module

pwkit.dulk_models), 50
calc_gs_eta() (in module pwkit.dulk_models), 50
calc_gs_kappa() (in module pwkit.dulk_models), 50

157

pwkit, Release 1.0.0

calc_gs_snu_ujy() (in module pwkit.dulk_models),
51

calc_halfmax_points() (pwkit.synphot.Bandpass
method), 84

calc_nu_b() (in module pwkit.dulk_models), 53
calc_pivot_wavelength()

(pwkit.synphot.Bandpass method), 84
calc_snu() (in module pwkit.dulk_models), 53
calc_synch_eta() (in module pwkit.dulk_models),

52
calc_synch_kappa() (in module

pwkit.dulk_models), 52
calc_synch_snu_ujy() (in module

pwkit.dulk_models), 52
Calculator (class in pwkit.fk10), 57
cas_a() (in module pwkit.radio_cal_models), 77
CasapyScript (class in

pwkit.environments.casa.scripting), 135
charfreq (pwkit.astimage.AstroImage attribute), 47
check_usage() (in module pwkit.cli), 141
chisq (pwkit.lsqmdl.ModelBase attribute), 65
chmod() (pwkit.io.Path method), 14
CiaoTool (class in pwkit.environments.ciao), 139
clearcal() (in module

pwkit.environments.casa.tasks), 109
clscale() (in module pwkit.ellipses), 54
colinfo() (pwkit.latex.AlignedNumberFormatter

method), 99
colinfo() (pwkit.latex.BasicFormatter method), 99
colinfo() (pwkit.latex.BoolFormatter method), 99
colinfo() (pwkit.latex.LimitFormatter method), 100
colinfo() (pwkit.latex.MaybeNumberFormatter

method), 100
colinfo() (pwkit.latex.UncertFormatter method), 101
Command (class in pwkit.cli.multitool), 148
commandline() (pwkit.cli.multitool.Multitool

method), 149
ComposedModel (class in pwkit.lsqmdl), 69
concat() (in module pwkit.environments.casa.tasks),

110
Config (class in pwkit.environments.casa.dftphotom),

134
Config (class in pwkit.environments.casa.spwglue), 136
copy() (pwkit.Holder method), 6
copy_to() (pwkit.io.Path method), 14
counts (pwkit.environments.casa.dftdynspec.Loader at-

tribute), 132
covar (pwkit.lsqmdl.ModelBase attribute), 65
create_tempfile() (pwkit.io.Path class method), 8
Custom (in module pwkit.kwargv), 145
cwd (pwkit.slurp.Slurper attribute), 97
cwd() (pwkit.io.Path class method), 8

D
data (pwkit.lsqmdl.ModelBase attribute), 65
data_frame_to_astropy_table() (in module

pwkit.numutil), 25
data_to_argb32() (in module

pwkit.data_gui_helpers), 93
data_to_imagesurface() (in module

pwkit.data_gui_helpers), 93
databiv() (in module pwkit.ellipses), 55
datacol (pwkit.environments.casa.dftphotom.Config

attribute), 134
datadir() (in module pwkit.environments.casa.util),

131
datascale (pwkit.environments.casa.dftphotom.Config

attribute), 134
debug_derivative()

(pwkit.lsqmdl.ComposedModel method),
69

dec (pwkit.astutil.AstrometryInfo attribute), 42
default (pwkit.kwargv.KeywordInfo attribute), 146
delcal() (in module pwkit.environments.casa.tasks),

110
DelegatingCommand (class in pwkit.cli.multitool),

148
delmod_cli() (in module

pwkit.environments.casa.tasks), 110
deriv() (pwkit.lsqmdl.AddConstantComponent

method), 69
deriv() (pwkit.lsqmdl.AddPolynomialComponent

method), 70
deriv() (pwkit.lsqmdl.AddValuesComponent method),

70
deriv() (pwkit.lsqmdl.MatMultComponent method),

70
deriv() (pwkit.lsqmdl.ModelComponent method), 69
deriv() (pwkit.lsqmdl.ScaleComponent method), 71
deriv() (pwkit.lsqmdl.SeriesComponent method), 70
derive_identity_arf() (in module pwkit.sherpa),

80
derive_identity_rmf() (in module pwkit.sherpa),

80
dfsmooth() (in module pwkit.numutil), 24
dftphotom() (in module

pwkit.environments.casa.dftphotom), 135
dftphotom_cli() (in module

pwkit.environments.casa.dftphotom), 135
die() (in module pwkit.cli), 142
djoin() (in module pwkit.io), 21
drive (pwkit.io.Path attribute), 10

E
ellabc() (in module pwkit.ellipses), 56
ellbiv() (in module pwkit.ellipses), 56
elld2() (in module pwkit.ellipses), 55

158 Index

pwkit, Release 1.0.0

ellplot() (in module pwkit.ellipses), 56
ellpoint() (in module pwkit.ellipses), 55
elplot() (in module pwkit.environments.casa.tasks),

111
ElplotConfig (class in

pwkit.environments.casa.tasks), 111
encoding (pwkit.slurp.Slurper attribute), 97
ensure_dir() (in module pwkit.io), 21
ensure_dir() (pwkit.io.Path method), 15
ensure_parent() (pwkit.io.Path method), 15
ensure_symlink() (in module pwkit.io), 21
enumeration() (in module pwkit.simpleenum), 33
env (pwkit.slurp.Slurper attribute), 97
errinfo() (in module pwkit.msmt), 73
Events (class in pwkit.environments.sas.data), 139
executable (pwkit.slurp.Slurper attribute), 97
exists() (pwkit.io.Path method), 13
expand() (pwkit.io.Path method), 11
expand_rmf_matrix() (in module pwkit.sherpa), 80
extract() (pwkit.lsqmdl.AddConstantComponent

method), 69
extract() (pwkit.lsqmdl.AddPolynomialComponent

method), 70
extract() (pwkit.lsqmdl.AddValuesComponent

method), 70
extract() (pwkit.lsqmdl.MatMultComponent

method), 70
extract() (pwkit.lsqmdl.ModelComponent method),

69
extract() (pwkit.lsqmdl.ScaleComponent method), 71
extract() (pwkit.lsqmdl.SeriesComponent method),

70
extractbpflags() (in module

pwkit.environments.casa.tasks), 111

F
field (pwkit.environments.casa.dftphotom.Config at-

tribute), 134
fill_from_allwise()

(pwkit.astutil.AstrometryInfo method), 44
fill_from_simbad() (pwkit.astutil.AstrometryInfo

method), 43
finalize_setup() (pwkit.lsqmdl.MatMultComponent

method), 70
finalize_setup() (pwkit.lsqmdl.ModelComponent

method), 69
finalize_setup() (pwkit.lsqmdl.ScaleComponent

method), 71
finalize_setup() (pwkit.lsqmdl.SeriesComponent

method), 70
find_gamma_params() (in module pwkit.msmt), 73
find_rt_coefficients() (pwkit.fk10.Calculator

method), 61

find_rt_coefficients_tot_intens()
(pwkit.fk10.Calculator method), 61

fits_recarray_to_data_frame() (in module
pwkit.numutil), 25

FITSImage (class in pwkit.astimage), 47
fixupfunc (pwkit.kwargv.KeywordInfo attribute), 146
flagcmd() (in module pwkit.environments.casa.tasks),

112
FlagcmdConfig (class in

pwkit.environments.casa.tasks), 112
flaglist() (in module

pwkit.environments.casa.tasks), 112
FlaglistConfig (class in

pwkit.environments.casa.tasks), 112
flagmanager_cli() (in module

pwkit.environments.casa.tasks), 113
flagzeros() (in module

pwkit.environments.casa.tasks), 113
FlagzerosConfig (class in

pwkit.environments.casa.tasks), 113
flam_ang_to_fnu_cgs() (in module

pwkit.synphot), 85
flat_ee_bandpass_pivot_wavelength() (in

module pwkit.synphot), 85
fluxscale() (in module

pwkit.environments.casa.tasks), 114
FluxscaleConfig (class in

pwkit.environments.casa.tasks), 114
fmtdeglat() (in module pwkit.astutil), 37
fmtdeglon() (in module pwkit.astutil), 37
fmthours() (in module pwkit.astutil), 36
fmtinfo() (in module pwkit.msmt), 73
fmtradec() (in module pwkit.astutil), 37
fnu_cgs_to_flam_ang() (in module

pwkit.synphot), 85
fork_detached_process() (in module pwkit.cli),

142
forkandlog() (in module

pwkit.environments.casa.util), 131
format (pwkit.environments.casa.dftphotom.Config at-

tribute), 134
format() (pwkit.io.Path method), 11
freqs (pwkit.environments.casa.dftdynspec.Loader at-

tribute), 133
from_pcount() (pwkit.msmt.Uval static method), 73
ft() (in module pwkit.environments.casa.tasks), 114
FtConfig (class in pwkit.environments.casa.tasks), 115

G
gaincal() (in module pwkit.environments.casa.tasks),

115
GaincalConfig (class in

pwkit.environments.casa.tasks), 116
gaussian_convolve() (in module pwkit.astutil), 40

Index 159

pwkit, Release 1.0.0

gaussian_deconvolve() (in module pwkit.astutil),
41

gencal() (in module pwkit.environments.casa.tasks),
117

GencalConfig (class in
pwkit.environments.casa.tasks), 117

get() (pwkit.Holder method), 6
get() (pwkit.synphot.Registry method), 83
get_2mass_epoch() (in module pwkit.astutil), 44
get_bkg_qq_data() (in module pwkit.sherpa), 78
get_map() (pwkit.parallel.ParallelHelper method), 30
get_parent() (pwkit.io.Path method), 11
get_ppmap() (pwkit.parallel.ParallelHelper method),

30
get_simbad_astrometry_info() (in module

pwkit.astutil), 45
get_source_qq_data() (in module pwkit.sherpa),

78
get_std_registry() (in module pwkit.synphot), 82
get_stderr_bytes() (in module pwkit.io), 21
get_stdout_bytes() (in module pwkit.io), 20
getopacities() (in module

pwkit.environments.casa.tasks), 118
ghz_to_ang() (in module pwkit.synphot), 85
glob() (pwkit.io.Path method), 13
gpdetrend() (in module

pwkit.environments.casa.tasks), 118
GpdetrendConfig (class in

pwkit.environments.casa.tasks), 119
gpplot() (in module pwkit.environments.casa.tasks),

119
GpplotConfig (class in

pwkit.environments.casa.tasks), 119
GTIData (class in pwkit.environments.sas.data), 139

H
hackfield (pwkit.environments.casa.spwglue.Config

attribute), 136
halfmax_points() (pwkit.synphot.Bandpass

method), 84
has() (pwkit.Holder method), 6
HelpCommand (class in pwkit.cli.multitool), 149
Holder (class in pwkit), 5
Holder() (in module pwkit), 6
HumaneOutputFormat (class in

pwkit.environments.casa.dftphotom), 135

I
image2fits() (in module

pwkit.environments.casa.tasks), 120
imags (pwkit.environments.casa.dftdynspec.Loader at-

tribute), 133
imin (pwkit.pdm.PDMResult attribute), 74

importalma() (in module
pwkit.environments.casa.tasks), 120

importevla() (in module
pwkit.environments.casa.tasks), 121

index (pwkit.lsqmdl.Parameter attribute), 66
InifileError, 98
init_cas_a() (in module pwkit.radio_cal_models),

77
InterruptiblePool (class in pwkit.parallel), 32
INVERSE_C_NSM (in module

pwkit.environments.casa.util), 130
INVERSE_C_SM (in module

pwkit.environments.casa.util), 130
invoke() (pwkit.cli.multitool.Command method), 148
invoke() (pwkit.cli.multitool.DelegatingCommand

method), 148
invoke() (pwkit.cli.multitool.HelpCommand method),

149
invoke_command() (pwkit.cli.multitool.DelegatingCommand

method), 149
invoke_command() (pwkit.environments.ciao.CiaoTool

method), 139
invoke_tool() (in module pwkit.cli.multitool), 147
invoke_with_usage()

(pwkit.cli.multitool.Command method), 148
invsigma (pwkit.lsqmdl.ModelBase attribute), 65
is_absolute() (pwkit.io.Path method), 12
is_block_device() (pwkit.io.Path method), 13
is_char_device() (pwkit.io.Path method), 13
is_dir() (pwkit.io.Path method), 13
is_fifo() (pwkit.io.Path method), 13
is_file() (pwkit.io.Path method), 13
is_socket() (pwkit.io.Path method), 13
is_symlink() (pwkit.io.Path method), 13
iterdir() (pwkit.io.Path method), 13

J
joinpath() (pwkit.io.Path method), 12
jy_to_flam() (pwkit.synphot.Bandpass method), 84

K
kbn_conf() (in module pwkit.kbn_conf), 62
KeywordInfo (class in pwkit.kwargv), 146
KwargvError, 145

L
latexify() (in module pwkit.latex), 102
latexify_l3col() (in module pwkit.latex), 102
latexify_n2col() (in module pwkit.latex), 102
latexify_u3col() (in module pwkit.latex), 102
Lightcurve (class in pwkit.environments.sas.data),

139
liminfo() (in module pwkit.msmt), 73
LimitError, 72

160 Index

pwkit, Release 1.0.0

LimitFormatter (class in pwkit.latex), 100
limtype() (in module pwkit.msmt), 73
limtype() (pwkit.msmt.Textual method), 72
linebreak (pwkit.slurp.Slurper attribute), 97
listobs() (in module pwkit.environments.casa.tasks),

121
listsdm() (in module pwkit.environments.casa.tasks),

121
lm_prob (pwkit.lsqmdl.Model attribute), 67
load_bcah98_mass_radius() (in module

pwkit.ucd_physics), 87
load_skyfield_data() (in module pwkit.astutil),

44
load_spectrum() (in module pwkit.phoenix), 76
Loader (class in pwkit.environments.casa.dftdynspec),

132
logger() (in module pwkit.environments.casa.util),

131
loglevel (pwkit.environments.casa.dftphotom.Config

attribute), 135
Lval (class in pwkit.msmt), 72

M
mag_to_flam() (pwkit.synphot.Bandpass method), 84
mag_to_fnu() (pwkit.synphot.Bandpass method), 84
make_fixed_temp_multi_apec() (in module

pwkit.sherpa), 77
make_frozen_func()

(pwkit.lsqmdl.ComposedModel method),
69

make_frozen_func() (pwkit.lsqmdl.Model method),
67

make_frozen_func() (pwkit.lsqmdl.ModelBase
method), 65

make_frozen_func()
(pwkit.lsqmdl.PolynomialModel method),
68

make_frozen_func() (pwkit.lsqmdl.ScaleModel
method), 68

make_multi_qq_plots() (in module pwkit.sherpa),
79

make_multi_spectrum_plots() (in module
pwkit.sherpa), 79

make_parallel_helper() (in module
pwkit.parallel), 29

make_path_func() (in module pwkit.io), 21
make_qq_plot() (in module pwkit.sherpa), 78
make_relative() (pwkit.io.Path method), 12
make_spectrum_plot() (in module pwkit.sherpa),

79
make_step_lcont() (in module pwkit.numutil), 28
make_step_rcont() (in module pwkit.numutil), 28
make_tempfile() (pwkit.io.Path method), 15
make_tophat_ee() (in module pwkit.numutil), 28

make_tophat_ei() (in module pwkit.numutil), 28
make_tophat_ie() (in module pwkit.numutil), 28
make_tophat_ii() (in module pwkit.numutil), 28
mass_from_j() (in module pwkit.ucd_physics), 87
match() (pwkit.io.Path method), 13
MatMultComponent (class in pwkit.lsqmdl), 70
maxvals (pwkit.kwargv.KeywordInfo attribute), 146
MaybeNumberFormatter (class in pwkit.latex), 100
mc_pmins (pwkit.pdm.PDMResult attribute), 74
mc_puncert (pwkit.pdm.PDMResult attribute), 74
mc_pvalue (pwkit.pdm.PDMResult attribute), 74
mc_tmins (pwkit.pdm.PDMResult attribute), 74
mdata (pwkit.lsqmdl.ModelBase attribute), 65
meanbp (pwkit.environments.casa.spwglue.Config at-

tribute), 136
mfsclean() (in module

pwkit.environments.casa.tasks), 122
MfscleanConfig (class in

pwkit.environments.casa.tasks), 122
mfunc (pwkit.lsqmdl.ModelBase attribute), 66
minvals (pwkit.kwargv.KeywordInfo attribute), 146
MIRIADImage (class in pwkit.astimage), 47
mjd (pwkit.astimage.AstroImage attribute), 47
mjd2date() (in module

pwkit.environments.casa.tasks), 122
mjds (pwkit.environments.casa.dftdynspec.Loader at-

tribute), 133
mk_radius_from_mass_bcah98() (in module

pwkit.ucd_physics), 87
mkdir() (pwkit.io.Path method), 15
Model (class in pwkit.lsqmdl), 67
model() (pwkit.lsqmdl.AddConstantComponent

method), 69
model() (pwkit.lsqmdl.AddPolynomialComponent

method), 70
model() (pwkit.lsqmdl.AddValuesComponent method),

70
model() (pwkit.lsqmdl.MatMultComponent method),

71
model() (pwkit.lsqmdl.ModelComponent method), 69
model() (pwkit.lsqmdl.ScaleComponent method), 71
model() (pwkit.lsqmdl.SeriesComponent method), 70
ModelBase (class in pwkit.lsqmdl), 65
ModelComponent (class in pwkit.lsqmdl), 69
msselect_keys (in module

pwkit.environments.casa.util), 130
mstransform() (in module

pwkit.environments.casa.tasks), 123
MstransformConfig (class in

pwkit.environments.casa.tasks), 123
multiprocessing_ppmap_worker() (in module

pwkit.parallel), 32
MultiprocessingPoolHelper (class in

pwkit.parallel), 32

Index 161

pwkit, Release 1.0.0

Multitool (class in pwkit.cli.multitool), 149
mutate_stream() (in module pwkit.inifile), 98

N
n_freqs (pwkit.environments.casa.dftdynspec.Loader

attribute), 133
n_mjds (pwkit.environments.casa.dftdynspec.Loader at-

tribute), 133
name (pwkit.io.Path attribute), 10
name (pwkit.lsqmdl.Parameter attribute), 66
native_flux_kind (pwkit.synphot.Bandpass at-

tribute), 84
NotDefinedError (class in pwkit.synphot), 86

O
observation (pwkit.environments.casa.dftphotom.Config

attribute), 134
offset_cbrt() (pwkit.data_gui_helpers.Stretcher

method), 93
open() (pwkit.io.Path method), 17
orientcen() (in module pwkit.astutil), 38
outstream (pwkit.environments.casa.dftphotom.Config

attribute), 134

P
p_side() (pwkit.lmmin.Problem method), 64
page_data_frame() (in module pwkit.numutil), 25
PandasOutputFormat (class in

pwkit.environments.casa.dftphotom), 135
parallax (pwkit.astutil.AstrometryInfo attribute), 43
parallel_newton() (in module pwkit.numutil), 26
parallel_quad() (in module pwkit.numutil), 26
ParallelHelper (class in pwkit.parallel), 30
Parameter (class in pwkit.lsqmdl), 66
params (pwkit.lsqmdl.ModelBase attribute), 66
parang() (in module pwkit.astutil), 40
parent (pwkit.io.Path attribute), 10
parents (pwkit.io.Path attribute), 10
parse() (pwkit.kwargv.ParseKeywords method), 146
parse_or_die() (pwkit.kwargv.ParseKeywords

method), 146
parsedeglat() (in module pwkit.astutil), 38
parsedeglon() (in module pwkit.astutil), 38
ParseError, 145
parsehours() (in module pwkit.astutil), 38
ParseKeywords (class in pwkit.kwargv), 146
parser (pwkit.kwargv.KeywordInfo attribute), 146
parts (pwkit.io.Path attribute), 10
Path (class in pwkit.io), 8
Path() (pwkit.io.Path method), 8
pathlines() (in module pwkit.io), 21
pathwords() (in module pwkit.io), 21
pclat (pwkit.astimage.AstroImage attribute), 47
pclon (pwkit.astimage.AstroImage attribute), 47

pdm() (in module pwkit.pdm), 75
PDMResult (class in pwkit.pdm), 74
pivot_wavelength() (pwkit.synphot.Bandpass

method), 84
pivot_wavelength_ee() (in module

pwkit.synphot), 86
pivot_wavelength_qe() (in module

pwkit.synphot), 86
PKError (class in pwkit), 7
plot() (pwkit.lsqmdl.ModelBase method), 66
plotants() (in module

pwkit.environments.casa.tasks), 124
plotcal() (in module pwkit.environments.casa.tasks),

124
PlotcalConfig (class in

pwkit.environments.casa.tasks), 124
pmin (pwkit.pdm.PDMResult attribute), 74
pnames (pwkit.lsqmdl.ModelBase attribute), 66
pol_is_intensity (in module

pwkit.environments.casa.util), 130
pol_names (in module pwkit.environments.casa.util),

130
pol_to_miriad (in module

pwkit.environments.casa.util), 130
polarization (pwkit.environments.casa.dftphotom.Config

attribute), 134
PolynomialModel (class in pwkit.lsqmdl), 68
pop_option() (in module pwkit.cli), 143
populate() (pwkit.cli.multitool.DelegatingCommand

method), 149
pos_epoch (pwkit.astutil.AstrometryInfo attribute), 42
pos_u_maj (pwkit.astutil.AstrometryInfo attribute), 42
pos_u_min (pwkit.astutil.AstrometryInfo attribute), 42
pos_u_pa (pwkit.astutil.AstrometryInfo attribute), 42
PowerLawApecDemModel (class in pwkit.sherpa), 77
predict() (pwkit.astutil.AstrometryInfo method), 43
predict_without_uncertainties()

(pwkit.astutil.AstrometryInfo method), 43
prep_params() (pwkit.lsqmdl.MatMultComponent

method), 71
prep_params() (pwkit.lsqmdl.ModelComponent

method), 69
prep_params() (pwkit.lsqmdl.ScaleComponent

method), 71
prep_params() (pwkit.lsqmdl.SeriesComponent

method), 70
prepend_environ_path() (in module

pwkit.environments), 151
prepend_path() (in module pwkit.environments),

151
print_prediction() (pwkit.astutil.AstrometryInfo

method), 43
print_soln() (pwkit.lsqmdl.ModelBase method), 66
print_tracebacks (class in pwkit.cli), 143

162 Index

pwkit, Release 1.0.0

printexc (pwkit.kwargv.KeywordInfo attribute), 146
Problem (class in pwkit.lmmin), 64
proc (pwkit.slurp.Slurper attribute), 97
Progress (class in pwkit.environments.casa.spwglue),

136
promo_dec (pwkit.astutil.AstrometryInfo attribute), 43
promo_ra (pwkit.astutil.AstrometryInfo attribute), 42
promo_u_maj (pwkit.astutil.AstrometryInfo attribute),

43
promo_u_min (pwkit.astutil.AstrometryInfo attribute),

43
promo_u_pa (pwkit.astutil.AstrometryInfo attribute),

43
propagate_signals (pwkit.slurp.Slurper attribute),

97
puncerts (pwkit.lsqmdl.ModelBase attribute), 66
pwkit (module), 5
pwkit.astimage (module), 46
pwkit.astutil (module), 35
pwkit.bblocks (module), 47
pwkit.cgs (module), 49
pwkit.cli (module), 141
pwkit.cli.astrotool (module), 89
pwkit.cli.imtool (module), 89
pwkit.cli.latexdriver (module), 89
pwkit.cli.multitool (module), 147
pwkit.cli.wrapout (module), 89
pwkit.colormaps (module), 91
pwkit.contours (module), 92
pwkit.data_gui_helpers (module), 93
pwkit.dulk_models (module), 49
pwkit.ellipses (module), 53
pwkit.environments (module), 151
pwkit.environments.casa (module), 105
pwkit.environments.casa.dftdynspec (mod-

ule), 132
pwkit.environments.casa.dftphotom (mod-

ule), 133
pwkit.environments.casa.scripting (mod-

ule), 135
pwkit.environments.casa.spwglue (module),

136
pwkit.environments.casa.tasks (module),

106
pwkit.environments.casa.util (module), 129
pwkit.environments.ciao (module), 139
pwkit.environments.heasoft (module), 136
pwkit.environments.sas (module), 137
pwkit.environments.sas.data (module), 138
pwkit.fk10 (module), 57
pwkit.immodel (module), 62
pwkit.inifile (module), 97
pwkit.io (module), 8
pwkit.kbn_conf (module), 62

pwkit.kwargv (module), 144
pwkit.latex (module), 98
pwkit.lmmin (module), 62
pwkit.lsqmdl (module), 65
pwkit.method_decorator (module), 152
pwkit.msmt (module), 71
pwkit.numutil (module), 21
pwkit.parallel (module), 28
pwkit.pdm (module), 74
pwkit.phoenix (module), 75
pwkit.radio_cal_models (module), 76
pwkit.sherpa (module), 77
pwkit.simpleenum (module), 32
pwkit.slurp (module), 95
pwkit.synphot (module), 81
pwkit.tabfile (module), 102
pwkit.tinifile (module), 103
pwkit.ucd_physics (module), 86
pwkit.unicode_to_latex (module), 104
PyrapImage (class in pwkit.astimage), 47

R
ra (pwkit.astutil.AstrometryInfo attribute), 42
rchisq (pwkit.lsqmdl.ModelBase attribute), 66
read() (in module pwkit.tabfile), 102
read_astropy_ascii() (pwkit.io.Path method), 17
read_fits() (pwkit.io.Path method), 18
read_fits_bintable() (pwkit.io.Path method), 18
read_hdf() (pwkit.io.Path method), 18
read_inifile() (pwkit.io.Path method), 18
read_json() (pwkit.io.Path method), 18
read_lines() (pwkit.io.Path method), 19
read_numpy() (pwkit.io.Path method), 19
read_numpy_text() (pwkit.io.Path method), 19
read_pandas() (pwkit.io.Path method), 19
read_pickle() (pwkit.io.Path method), 19
read_pickles() (pwkit.io.Path method), 19
read_stream() (in module pwkit.inifile), 98
read_tabfile() (pwkit.io.Path method), 19
read_text() (pwkit.io.Path method), 20
read_toml() (pwkit.io.Path method), 20
read_yaml() (pwkit.io.Path method), 20
readlink() (pwkit.io.Path method), 13
reals (pwkit.environments.casa.dftdynspec.Loader at-

tribute), 133
Redirection (in module pwkit.slurp), 96
reduce_data_frame() (in module pwkit.numutil),

24
reduce_data_frame_evenly_with_gaps() (in

module pwkit.numutil), 24
Referencer (class in pwkit.latex), 100
RegionData (class in pwkit.environments.sas.data),

139

Index 163

pwkit, Release 1.0.0

register() (pwkit.cli.multitool.DelegatingCommand
method), 149

register_bpass() (pwkit.synphot.Registry method),
83

register_halfmaxes() (pwkit.synphot.Registry
method), 83

register_pivot_wavelength()
(pwkit.synphot.Registry method), 83

Registry (class in pwkit.synphot), 82
registry (pwkit.synphot.Bandpass attribute), 84
relative_to() (pwkit.io.Path method), 12
rellink() (in module pwkit.io), 21
rellink_to() (pwkit.io.Path method), 16
rename() (pwkit.io.Path method), 16
repeatable (pwkit.kwargv.KeywordInfo attribute),

146
rephase (pwkit.environments.casa.dftphotom.Config

attribute), 134
repval() (in module pwkit.msmt), 73
repval() (pwkit.msmt.Textual method), 72
repvals() (pwkit.msmt.Uval method), 73
required (pwkit.kwargv.KeywordInfo attribute), 146
reraise_context() (in module pwkit), 7
resids (pwkit.lsqmdl.ModelBase attribute), 66
resolve() (pwkit.io.Path method), 12
rglob() (pwkit.io.Path method), 13
rmdir() (pwkit.io.Path method), 16
rms() (in module pwkit.numutil), 23
rmtree() (pwkit.io.Path method), 16

S
sample_double_norm() (in module pwkit.msmt), 74
sample_gamma() (in module pwkit.msmt), 74
sanitize_unicode() (in module

pwkit.environments.casa.util), 131
scale (pwkit.kwargv.KeywordInfo attribute), 146
ScaleComponent (class in pwkit.lsqmdl), 71
ScaleModel (class in pwkit.lsqmdl), 68
scan (pwkit.environments.casa.dftphotom.Config at-

tribute), 134
scandir() (pwkit.io.Path method), 14
scanintent (pwkit.environments.casa.dftphotom.Config

attribute), 134
sep (pwkit.kwargv.KeywordInfo attribute), 146
serial_ppmap() (in module pwkit.parallel), 31
SerialHelper (class in pwkit.parallel), 31
SeriesComponent (class in pwkit.lsqmdl), 70
set() (pwkit.Holder method), 6
set_bfield() (pwkit.fk10.Calculator method), 58
set_bfield_for_s0() (pwkit.fk10.Calculator

method), 58
set_data() (pwkit.lsqmdl.ModelBase method), 66
set_edist_powerlaw() (pwkit.fk10.Calculator

method), 59

set_edist_powerlaw_gamma()
(pwkit.fk10.Calculator method), 59

set_freqs() (pwkit.fk10.Calculator method), 59
set_func() (pwkit.lsqmdl.Model method), 67
set_hybrid_parameters()

(pwkit.fk10.Calculator method), 59
set_ignore_q_terms() (pwkit.fk10.Calculator

method), 60
set_obs_angle() (pwkit.fk10.Calculator method),

60
set_one() (pwkit.Holder method), 6
set_one_freq() (pwkit.fk10.Calculator method), 60
set_padist_gaussian_loss_cone()

(pwkit.fk10.Calculator method), 60
set_padist_isotropic() (pwkit.fk10.Calculator

method), 60
set_simple_func() (pwkit.lsqmdl.Model method),

67
set_thermal_background()

(pwkit.fk10.Calculator method), 60
set_trapezoidal_integration()

(pwkit.fk10.Calculator method), 61
setjy() (in module pwkit.environments.casa.tasks),

125
SetjyConfig (class in pwkit.environments.casa.tasks),

125
shape (pwkit.astimage.AstroImage attribute), 47
show_corr() (pwkit.lsqmdl.ModelBase method), 66
show_cov() (pwkit.lsqmdl.ModelBase method), 66
show_usage() (in module pwkit.cli), 143
sigmascale() (in module pwkit.ellipses), 54
SimpleImage (class in pwkit.astimage), 47
slice_around_gaps() (in module pwkit.numutil),

24
slice_evenly_with_gaps() (in module

pwkit.numutil), 24
Slurper (class in pwkit.slurp), 96
Solution (class in pwkit.lmmin), 64
solve() (pwkit.lsqmdl.Model method), 68
sphbear() (in module pwkit.astutil), 39
sphdist() (in module pwkit.astutil), 38
sphofs() (in module pwkit.astutil), 39
split() (in module pwkit.environments.casa.tasks),

126
SplitConfig (class in pwkit.environments.casa.tasks),

126
spw (pwkit.environments.casa.dftphotom.Config at-

tribute), 134
stat() (pwkit.io.Path method), 14
stderr (pwkit.slurp.Slurper attribute), 97
stdin (pwkit.slurp.Slurper attribute), 97
stdout (pwkit.slurp.Slurper attribute), 97
stem (pwkit.io.Path attribute), 11
Stretcher (class in pwkit.data_gui_helpers), 93

164 Index

pwkit, Release 1.0.0

subimage() (pwkit.astimage.AstroImage method), 47
suffix (pwkit.io.Path attribute), 11
suffixes (pwkit.io.Path attribute), 11
symlink_to() (pwkit.io.Path method), 16
synphot() (pwkit.synphot.Bandpass method), 85

T
TableBuilder (class in pwkit.latex), 100
taql (pwkit.environments.casa.dftphotom.Config at-

tribute), 134
tauc_from_mass() (in module pwkit.ucd_physics),

87
telescope (pwkit.synphot.Bandpass attribute), 84
telescopes() (pwkit.synphot.Registry method), 83
text_pieces() (pwkit.msmt.Uval method), 73
Textual (class in pwkit.msmt), 72
thetas (pwkit.pdm.PDMResult attribute), 75
time (pwkit.environments.casa.dftphotom.Config at-

tribute), 134
timeout (pwkit.slurp.Slurper attribute), 97
to_dict() (pwkit.Holder method), 6
to_pretty() (pwkit.Holder method), 6
tools (in module pwkit.environments.casa.util), 129
touch() (pwkit.io.Path method), 16
try_open() (in module pwkit.io), 21
try_open() (pwkit.io.Path method), 17
try_unlink() (pwkit.io.Path method), 16
tsysplot() (in module

pwkit.environments.casa.tasks), 126
TsysplotConfig (class in

pwkit.environments.casa.tasks), 127
tt_bblock() (in module pwkit.bblocks), 48

U
u_imags (pwkit.environments.casa.dftdynspec.Loader

attribute), 133
u_parallax (pwkit.astutil.AstrometryInfo attribute),

43
u_reals (pwkit.environments.casa.dftdynspec.Loader

attribute), 133
u_vradial (pwkit.astutil.AstrometryInfo attribute), 43
uiname (pwkit.kwargv.KeywordInfo attribute), 146
uncert (pwkit.lsqmdl.Parameter attribute), 66
UncertFormatter (class in pwkit.latex), 101
unicode_stdio() (in module pwkit.cli), 143
unicode_to_str() (in module pwkit), 8
unit_tophat_ee() (in module pwkit.numutil), 28
unit_tophat_ei() (in module pwkit.numutil), 28
unit_tophat_ie() (in module pwkit.numutil), 28
unit_tophat_ii() (in module pwkit.numutil), 28
units (pwkit.astimage.AstroImage attribute), 47
unlink() (pwkit.io.Path method), 16
UnsupportedError, 46
unwrap() (in module pwkit.msmt), 73

UQUANT_UNCERT (in module pwkit.msmt), 74
UsageError, 149
usmooth() (in module pwkit.numutil), 25
Uval (class in pwkit.msmt), 72
uval (pwkit.lsqmdl.Parameter attribute), 66
uval_dtype (in module pwkit.msmt), 74
uvdist (pwkit.environments.casa.dftphotom.Config at-

tribute), 135
uvsub() (in module pwkit.environments.casa.tasks),

127
UvsubConfig (class in pwkit.environments.casa.tasks),

127

V
VacuousContextManager (class in pwkit.parallel),

32
value (pwkit.lsqmdl.Parameter attribute), 66
verify() (pwkit.astutil.AstrometryInfo method), 43
vis (pwkit.environments.casa.dftphotom.Config at-

tribute), 134
vizread() (in module pwkit.tabfile), 103
vradial (pwkit.astutil.AstrometryInfo attribute), 43

W
weighted_mean() (in module pwkit.numutil), 23
weighted_mean_df() (in module pwkit.numutil), 23
weighted_variance() (in module pwkit.numutil),

23
WideHeader (class in pwkit.latex), 102
with_name() (pwkit.io.Path method), 12
with_suffix() (pwkit.io.Path method), 12
words() (in module pwkit.io), 21
write() (in module pwkit.inifile), 98
write() (in module pwkit.tabfile), 103
write_pickle() (pwkit.io.Path method), 20
write_pickles() (pwkit.io.Path method), 20
write_stream() (in module pwkit.inifile), 98
write_stream() (in module pwkit.tinifile), 104
write_yaml() (pwkit.io.Path method), 20
wrong_usage() (in module pwkit.cli), 143

X
xyphplot() (in module

pwkit.environments.casa.tasks), 128
XyphplotConfig (class in

pwkit.environments.casa.tasks), 128

Index 165

	About the Software
	Installation
	Citation
	Authors
	Copyright and License

	Foundations
	Core utilities (pwkit)
	Convenient file input and output (pwkit.io)
	Numerical utilities (pwkit.numutil)
	Framework for easy parallelized processing (pwkit.parallel)
	Quick enumerations of constant values (pwkit.simpleenum)

	Scientific Algorithms
	Basic astronomical calculations (pwkit.astutil)
	File-format-agnostic loading of astronomical images (pwkit.astimage)
	The Bayesian Blocks algorithm (pwkit.bblocks)
	Constants in CGS units (pwkit.cgs)
	Simple synchrotron radiation emission coefficients (pwkit.dulk_models)
	Representations of and computations with ellipses (pwkit.ellipses)
	Run the Fleischman & Kuznetsov (2010) synchrotron code (pwkit.fk10)
	Modeling sources in images (pwkit.immodel)
	Bayesian confidence intervals for count rates (pwkit.kbn_conf)
	Nonlinear least-squares minimization with Levenberg-Marquardt (pwkit.lmmin)
	Fitting generic models with least-squares minimization (pwkit.lsqmdl)
	Math with uncertain and censored measurements (pwkit.msmt)
	Period-finding with Phase Dispersion Minimization (pwkit.pdm)
	Loading the outputs of PHOENIX atmospheric models (pwkit.phoenix)
	Flux density models of radio calibrators (pwkit.radio_cal_models)
	Helpers for X-ray spectral modeling with the Sherpa packge (pwkit.sherpa)
	Synthetic photometry (pwkit.synphot)
	Scaling relations for physical properties of ultra-cool dwarfs (pwkit.ucd_physics)

	Command-line tools
	Quick astronomical calculations (astrotool)
	Quick operations on astronomical images (pwkit.cli.imtool)
	Single-command compilation of LaTeX documents (latexdriver)
	Wrap the output of a sub-program with extra information (wrapout)

	Data Visualization
	Mapping arbitrary data to color scales (pwkit.colormaps)
	Tracing contours (pwkit.contours)
	Utilities for data visualization (pwkit.data_gui_helpers)
	Easy visualization of matrices with GTK+ version 2 (pwkit.ndshow_gtk2)
	Easy visualization of matrices with GTK+ version 3 (pwkit.ndshow_gtk3)

	Data input and output
	Streaming output from other programs (pwkit.slurp)
	A simple “ini” file format (pwkit.inifile)
	Outputting data in LaTeX format (pwkit.latex)
	Reading and writing data tables with types and uncertainties (pwkit.tabfile)
	An “ini” file format with typed, uncertain data (pwkit.tinifile)
	Converting Unicode to LaTeX notation (pwkit.unicode_to_latex)

	External Software Environments
	CASA (pwkit.environments.casa)
	HEASoft (pwkit.environments.heasoft)
	SAS (pwkit.environments.sas)
	CIAO (pwkit.environments.ciao)

	Tools for writing command-line programs
	Utilities for command-line programs (pwkit.cli)
	Parsing keyword-style program arguments (pwkit.kwargv)
	Command-line programs with sub-commands (pwkit.cli.multitool)

	Behind-the-scenes infrastructure
	Interfacing with other software environments (pwkit.environments)
	Helper for decorators on class methods (pwkit.method_decorator)

	Indices and tables
	Python Module Index
	Index

